Какое уравнение является следствием другого. Презентация "Равносильность уравнений. Уравнение %U2013 следствие". II. Разбор теории: Возведение уравнения в чётную степень

Разработка урока алгебры в 11 профильном классе

Урок проводила учитель математики МБОУ СОШ № 6 Тупицына О.В.

Тема и номер урока в теме: «Применение нескольких преобразований, приводящих к уравнению-следствию», урок № 7, 8 в теме: «Уравнение – следствие»

Учебный предмет: Алгебра и начала математического анализа– 11 класс (профильное обучение по учебнику С.М.Никольского)

Вид урока: «систематизация и обобщения знаний и умений»

Тип урока: практикум

Роль учителя: направить познавательную активность учащихся на выработку умений самостоятельно применять знания в комплексе для выбора нужного способа или способов преобразования, приводящие к уравнению – следствию и применение способа в решении уравнения, в новых условиях.

Необходимое техническое оборудование: мультимедиа оборудование, веб-камера.

На уроке использовались :

  1. дидактическая модель обучения – создание проблемной ситуации,
  2. педагогические средства – листы с указанием учебных модулей, подборка заданий для решения уравнений,
  3. вид деятельности учащихся – групповая (группы формируются на уроках – «открытия» новых знаний, уроки № 1и 2 из учащихся с разной степенью обученности и обучаемости), совместное или индивидуальное решение задач,
  4. личностно – ориентированные образовательные технологии : модульное обучение, проблемное обучение, поисковый и исследовательский методы, коллективный диалог, деятельностный метод, работа с учебником и различными источниками,
  5. здоровьесберегающие технологии - для снятия напряжения проводится физкультминутка,
  6. компетенции:

- учебно – познавательная на базовом уровне - учащиеся знают понятие уравнения – следствия, корня уравнения и способы преобразования, приводящие к уравнению - следствию, умеют находить корни уравнений и выполнять их проверку на продуктивном уровне;

- на продвинутом уровне – учащиеся могут решать уравнения с помощью известных способов преобразований проверять корни уравнений, используя область допустимых значений уравнений; вычислять логарифмы с помощью свойств на основе исследования; информационная – учащиеся самостоятельно ищут, извлекают и отбирают необходимую для решения учебных задач информацию в источниках различного типа.

Дидактическая цель:

создание условий для :

Формирование представления об уравнениях – следствиях, корнях и способах преобразований;

Формирования опыта смыслотворчества на основе логического следствия из ранее изученных способов преобразования уравнений: возведения уравнения в чётную степень, потенцирование логарифмических уравнений, освобождение уравнения от знаменателей, приведение подобных членов;

Закрепление умений по определению выбора способа преобразования, дальнейшему решению уравнения и выбору корней уравнения;

Овладение навыками постановки задачи на основе известной и усвоенной информации, формирование запросов на выяснение того, что еще не известно;

Формирование познавательных интересов, интеллектуальных и творческих способностей учащихся;

Развитие логического мышления, творческой активности учащихся, проектных умений, умений излагать свои мысли;

Формирование чувства толерантности, взаимовыручки при работе в группе;

Пробуждения интереса к самостоятельному решению уравнений;

Задачи:

Организовать повторение и систематизацию знаний о способах преобразования уравнений;

- обеспечить овладение методами решения уравнений и проверки их корней;

- способствовать развитию аналитического и критического мышления учащихся; сравнивать и выбирать оптимальные методы решения уравнений;

- создать условия для развития исследовательских навыков, умений работы в группе;

Мотивировать учащихся на применение изученного материала для подготовки к ЕГЭ;

Проанализировать и оценить свою работу и работу своих товарищей по выполнению данной работы.

Планируемые результаты:

*личностные:

Навыки постановки задачи на основе известной и усвоенной информации, формирования запросов на выяснение того, что еще не известно;

Умение выбирать источники информации, необходимые для решения задачи; развитие познавательных интересов, интеллектуальных и творческих способностей учащихся;

Развитие логического мышления, творческой активности, умений излагать свои мысли, умение выстраивать аргументацию;

Самооценка результатов деятельности;

Умение работать в команде;

*метапредметные:

Умение выделять главное, сравнивать, обобщать, проводить аналогию, применять индуктивные способы рассуждений, выдвигать гипотезы при решении уравнений,

Способность к интерпретации и применению полученных знаний при подготовке к ЕГЭ;

*предметные:

Знания о способах преобразования уравнений,

Умение устанавливать закономерность, связанную с различными видами уравнений и использовать её при решении и отборе корней,

Интегрирующие цели урока:

  1. (для учителя) Формирование у учащихся целостного представления о способах преобразования уравнений и методах их решений;
  2. (для учащихся) Развитие умения наблюдать, сравнивать, обобщать, анализировать математические ситуации, связанные с видами уравнений, содержащими различные функции. Подготовка к ЕГЭ.

І этап урока:

Актуализация знаний для повышения мотивации в области применения различных способов преобразований уравнений (входная диагностика)

Этап актуализации знаний проводится в виде проверочной работы с самопроверкой. Предлагаются задания развивающего характера, опирающиеся на знания приобретённые на прошлых уроках, требующие от учащихся активной мыслительной деятельности и необходимые для выполнения задания на данном уроке.

Проверочная работа

  1. Выберите уравнения, требующие ограничения неизвестных на множестве всех действительных чисел:

а) = Х-2; б)3 = Х-2; в) =1;

г) ( = (; д) = ; е) +6 =5 ;

ж) = ; з) = .

(2) Укажите область допустимых значений каждого уравнения, где имеются ограничения.

(3) Выберите пример такого уравнения, где при преобразовании может произойти потеря корня (используйте материалы прошлых уроков по данной теме).

Ответы каждый сверяет самостоятельно по готовым, высвеченным на экране. Разбираются наиболее сложные задания и обращается особое внимание учащихся на примеры а, в, ж, з, где ограничения существуют.

Делаются выводы о том, что при решении уравнений, необходимо проводить определение области допустимых уравнением значений или делать проверку корней, чтобы избежать посторонних значений. Повторяются ранее изученные способы преобразования уравнений, приводящих к уравнению – следствию. То есть ученики тем самым смотивированны для поиска верно выбранного способа решения уравнения, предложенного им в дальнейшей работе.

ІІ этап урока:

Практическое применение своих знаний, умений и навыков при решении уравнений.

Группам раздаются листы с модулем, составленным по вопросам данной темы. В модуль входят пять учебных элементов, каждый из которых нацелен на выполнение определённых задач. Учащиеся, имеющие разные степени обученности и обучаемости самостоятельно определяют объём своей деятельности на уроке, но так как все работают в группах, происходит непрерывный процесс корректировки знаний и умений, подтягивание отстающих до обязательного, других до продвинутого и творческого уровней.

В середине урока проводится обязательная физминутка.

№ учебного элемента

Учебный элемент с указанием заданий

Руководство по освоению учебным материалом

УЭ-1

Цель: Определить и обосновать основные методы решения уравнений, основываясь на свойствах функций.

  1. Задание:

Укажите способ преобразования для решения следующих уравнений:

А) )= -8);

б) =

в) ( = (

г) ctg +х 2 -2х = ctg +24;

д) = ;

е) = sin x.

2) Задание:

Решите не менее двух уравнений из предложенных.

Опишите, какие способы применялись в решённых уравнениях.

П. 7.3 стр.212

П.7.4 стр.214

П. 7.5 стр.217

П.7.2 стр. 210

УЭ-2

Цель: Овладеть рациональными приёмами и методами решения

Задание:

Приведите примеры из указанных выше или самостоятельно подобранных (используйте материалы прошлых уроков) уравнений, при решении которых можно использовать рациональные приёмы решения, в чём они заключаются? (акцент на способ проверки корней уравнения)

УЭ-3

Цель: Использование полученных знаний при решении уравнений высокого уровня сложности

Задание:

= ( или

( = (

П.7.5

УЭ-4

Установите уровень освоения темы:

низкий – решение не более 2-х уравнений;

Средний – решение не более 4-х уравнений;

высокий – решение не более 5-ти уравнений

УЭ-5

Выходной контроль:

Составить таблицу, в которую представить все используемые вами способы преобразования уравнений и на каждый способ записать примеры, решённых вами уравнений, начиная с 1 урока темы: «Уравнения – следствия»

Конспекты в тетрадях

ІІІ этап урока:

Выходная диагностическая работа, представляющая рефлексию учащихся, которая покажет готовность не только к написанию контрольной работы, но и готовность к ЕГЭ по данному разделу.

По итогу урока все без исключения учащиеся оценивают себя сами, затем идёт учительская оценка. Если возникают несогласия между учителем и учеником, то учитель может предложить выполнение дополнительного задания ученику, чтобы объективно суметь оценить его. Домашнее задание нацелено на повторение материала перед контрольной работой.


В презентации продолжим рассмотрение равносильных уравнений, теорем, остановимся более подробно на этапах решения таких уравнений.

Для начала вспомним условие, при котором одно из уравнений является следствием другого (слайд 1). Автор приводит еще раз некоторые теоремы о равносильных уравнениях, которые были рассмотрены ранее: об умножении частей уравнения на одинаковое значение h (x); возведение частей уравнения в одинаковую четную степень; получение равносильного уравнения из уравнения log a f(x) = log a g (x).

На 5-м слайде презентации выделены основные этапы, с помощью которых удобно решать равносильные уравнения:

Найти решения равносильного уравнения;

Проанализировать решения;

Проверить.


Рассмотрим пример 1. Необходимо найти следствие уравнения x - 3 = 2. Найдем корень уравнения x = 5. Запишем равносильное уравнение (x - 3)(x - 6) = 2(x - 6), применив способ умножения частей уравнения на (x - 6). Упростив выражение до вида x 2 - 11x +30 = 0, найдем корни x 1 = 5, x 2 = 6. Т.к. каждый корень уравнения x - 3 = 2 является также решением уравнения x 2 - 11x +30 = 0, то x 2 - 11x +30 = 0 - это уравнение-следствие.


Пример 2. Найти другое следствие уравнения x - 3 = 2. Для получения равносильного уравнения используем метод возведения в четную степень. Упростив полученное выражение, запишем x 2 - 6x +5 = 0. Найдем корни уравнения x 1 = 5, x 2 = 1. Т.к. x = 5 (корень уравнения x - 3 = 2) является также решением уравнения x 2 - 6x +5 = 0, то уравнение x 2 - 6x +5 = 0 также является уравнением-следствием.


Пример 3. Необходимо найти следствие уравнения log 3 (x + 1) + log 3 (x + 3) = 1.

Заменим в уравнении 1 = log 3 3. Тогда, применяя утверждение из теоремы 6, запишем равносильное уравнение (x + 1)(x +3) = 3. Упростив выражение, получим x 2 + 4x = 0, где корнями будут x 1 = 0, x 2 = - 4. Значит уравнение x 2 + 4x = 0 - следствие для заданного уравнения log 3 (x + 1) + log 3 (x + 3) = 1.


Итак, можно сделать вывод: если расширяется область определения уравнения, то получается уравнение-следствие. Выделим стандартные действия при нахождении уравнения-следствия:

Избавление от знаменателей, которые содержат переменную;

Возведение частей уравнения в одинаковую четную степень;

Освобождение от логарифмических знаков.

Но важно запомнить: когда в ходе решения расширяется область определения уравнения, то необходимо проверить всех найденные корни - будут ли они попадать в ОДЗ.


Пример 4. Решить уравнение, представленное на слайде 12. Вначале найдем корни равносильного уравнения x 1 = 5, x 2 = - 2 (первый этап). Необходимо обязательно проверить корни (второй этап). Проверка корней (третий этап): x 1 = 5 не принадлежит области допустимых значений заданного уравнения, поэтому уравнение имеет одно решение только x = - 2.


В примере 5 найденный корень равносильного уравнения не входит в ОДЗ заданного уравнения. В примере 6 значение одного из двух найденных корней не определено, поэтому этот корень не является решением исходного уравнения.

Пусть даны два уравнения

Если каждый корень уравнения (2.1) является одновременно и корнем уравнения (2.2), то уравнение (2.2) называется следствием уравнения (2.1). Заметим, что равносильность уравнений означает, что каждое из уравнений является следствием другого.

В процессе решения уравнения часто приходится применять такие преобразования, которые приводят к уравнению, являющемуся следствием исходного. Уравнению-следствию удовлетворяют все корни исходного уравнения, но, кроме них, уравнение-следствие может иметь и такие решения, которые не являются корнями исходного уравнения, это так называемые посторонние корни. Чтобы выявить и отсеять посторонние корни, обычно поступают так: все найденные корни уравнения-следствия проверяют подстановкой в исходное уравнение.

Если при решении уравнения мы заменили его уравнением-следствием, то указанная выше проверка является неотъемлемой частью решения уравнения. Поэтому важно знать, при каких преобразованиях данное уравнение переходит в следствие.

Рассмотрим уравнение

и умножим обе его части на одно и то же выражение ,имеющее смысл при всех значениях . Получим уравнение

корнями которого служат как корни уравнения (2.3), так и корни уравнения . Значит, уравнение (2.4) есть следствие уравнения (2.3). Ясно, что уравнения (2.3) и (2.4) равносильны, если «постороннее» уравнение не имеет корней.

Итак, если обе части уравнения умножить на выражение , имеющее смысл при любых значениях , то получится уравнение, являющееся следствием исходного. Полученное уравнение будет равносильно исходному, если уравнение не имеет корней. Заметим, что обратное преобразование, т.е. переход от уравнения (2.4) к уравнению (2.3) путем деления обеих частей уравнения (2.4) на выражение , как правило, недопустимо, поскольку может привести к потере решений (в этом случае могут «потеряться» корни уравнения ). Например, уравнение имеет два корня: 3 и 4. Деление же обеих частей уравнения на приводит к уравнению , имеющему только один корень 4, т.е. произошла потеря корня.

Снова возьмем уравнение (2.3) и возведем обе его части в квадрат. Получим уравнение

корнями которого служат как корни уравнения (2.3), так и корни «постороннего» уравнения , т.е. уравнение (2.5) – следствие уравнения (2.3).

Например, уравнение имеет корень 4. Если обе части этого уравнения возвести в квадрат, то получится уравнение , имеющее два корня: 4 и -2. Значит, уравнение - следствие уравнения . При переходе от уравнения к уравнению появился посторонний корень -2.

Итак, при возведении обеих частей уравнения в квадрат (и вообще в любую четную степень) получается уравнение, являющееся следствием исходного. Значит, при указанном преобразовании возможно появление посторонних корней. Заметим, что возведение обеих частей уравнения в одну и ту же нечетную степень приводит к уравнению, равносильному данному.

При решении уравнений выполняются различные тождественные преобразования над выражениями, входящими в уравнение. При этом исходное уравнение изменяется другими, имеющими те же корни. Такие уравнения называются равносильными.

Определение: Уравнение

равносильно уравнению

если каждый корень первого уравнения является корнем второго и обратно, каждый корень второго уравнения является корнем первого, т.е. их решения совпадают.

Например, уравнения 3x-6=0; 2х-1=3 равносильны, т.к. каждое из уравнений имеет один корень х=2.

Любые два уравнения, имеющие пустое множество корней, считают равносильными.

Тот факт, что уравнения

f(x)=g(x) и f1(x)=g1(x)

равносильны, обозначают так:

f(x)=g(x) f1(x)=g1(x)

В процессе решения уравнений важно знать, при каких преобразованиях данное уравнение переходит в равносильное ему уравнение.

Теорема 1: Если какое-либо слагаемое перенести из одной части уравнения в другую, изменив его знак, то получим уравнение, равносильное данному.

Доказательство: Докажем, что уравнение

f(x) = g(x)+q(x) (1)

равносильно уравнению

f(x) - q(x) = g(x) (2)

Пусть х=а - корень уравнения. Значит имеет место числовое равенство

Но тогда по свойству действительных чисел будет выполняться и числовое равенство

показывающее, что а - корень уравнения (2). Аналогично доказывается, что каждый корень уравнения (2) является и корнем уравнения (1).

Что и требовалось доказать.

Теорема 2: Если обе части уравнения умножить или разделить на отличное от нуля число, то получим уравнение, равносильное данному.

Доказательство: докажем, что уравнение

равносильно уравнению

решим уравнение

и уравнение

  • 2х-1=0
  • 6х=3 2х=1

так как корни уравнений равны, то уравнения равносильны.

Что и требовалось доказать.

Рассмотрим уравнение

ОДЗ этого уравнения {х? 1, х? -3}

Мы знаем, что дробь равна нулю в том случае, когда ее числитель равен нулю, т.е.

а знаменатель не равен 0. Решая уравнение

находим корни х1=1, х2 = -2 . Но число 1 не входит в ОДЗ данного уравнения и значит, исходное уравнение имеет один корень х=-2.

В этом случае говорят, что уравнение

есть следствие уравнения

пусть даны два уравнения:

f1 (x) = g1 (x) (3)

f2 (x) = g2 (x) (4)

Если каждый корень уравнения (3) является корнем уравнения (4), то уравнение (4) называют следствием уравнения (3).

Этот факт записывают так:

В том случае, когда уравнение (3) - есть также следствие уравнения (4), эти уравнения равносильны.

Два уравнения равносильны в том, и только в том случае, когда каждое из них является следствием другого.

В приведенном выше примере уравнение - следствие

имеет два корня x1=1 и х2 =-2, а исходное уравнение имеет один корень х=-2. В этом случае корень х=1 называют посторонним для исходного уравнения

В общем случае корни уравнения-следствия, не являющиеся корнями исходного уравнения, называют посторонними.

Итак, если при решении уравнения происходит переход к уравнению - следствию, то могли появиться посторонние корни. В этом случае все корни уравнения-следствия нужно проверить, подставляя их в исходное уравнение. В некоторых случаях выявление посторонних корней облегчается знанием ОДЗ исходного уравнения - корни, не принадлежащие ОДЗ, можно сразу отбросить. Так, в приведенном примере посторонний корень х=1 не входит в ОДЗ уравнения

и потому отброшен.

Иногда посторонние корни могут появиться и при тождественных преобразованиях, если они приводят к изменению ОДЗ уравнения. Например, после приведения подобных членов в левой части уравнения

ОДЗ которого {х -2},

В тех случаях, когда в результате преобразований произошел переход от исходного уравнения к уравнению, не являющемуся его следствием, возможна потеря корней.

Например, уравнение

(х+1)(х+3)= х+1 (5)

Имеет два корня. Действительно, перенося все члены уравнения в левую часть и вынося х+1 за скобки, получим

откуда находим

Если же обе части уравнения (5) разделить («сократить») на х+1, то получим уравнение

имеющее один корень х=-2. В результате такого преобразования корень х=-1 потерян. Поэтому делить обе части уравнения на выражение, содержащее переменную, можно лишь в том случае, когда это выражение отлично от нуля.

Для того, чтобы в процессе решения уравнения избежать потери корней, необходимо следить за тем, чтобы переход осуществлялся либо к равносильным уравнениям, либо к уравнениям-следствиям.

Может привести к появлению так называемых посторонних корней. В этой статье мы, во-первых, детально разберем, что такое посторонние корни . Во-вторых, поговорим о причинах их возникновения. И в-третьих, на примерах рассмотрим основные способы отсеивания посторонних корней, то есть, проверки корней на предмет наличия среди них посторонних с целью исключения их из ответа.

Посторонние корни уравнения, определение, примеры

В школьных учебниках по алгебре не дается определение постороннего корня. Там представление о постороннем корне формируется путем описания следующей ситуации: при помощи некоторых преобразований уравнения осуществляется переход от исходного уравнения к уравнению-следствию, находятся корни полученного уравнения-следствия, и осуществляется проверка найденных корней подстановкой в исходное уравнение, которая показывает, что некоторые из найденных корней не являются корнями исходного уравнения, эти корни называют посторонними корнями для исходного уравнения .

Отталкиваясь от этой базы, для себя можно принять такое определение постороннего корня:

Определение

Посторонние корни – это корни полученного в результате проведения преобразований уравнения-следствия, не являющиеся корнями исходного уравнения.

Приведем пример. Рассмотрим уравнение и следствие этого уравнения x·(x−1)=0 , полученное в результате замены выражения тождественно равным ему выражением x·(x−1) . Исходное уравнение имеет единственный корень 1 . Уравнение, полученное в результате проведения преобразования, имеет два корня 0 и 1 . Значит 0 – это посторонний корень для исходного уравнения.

Причины возможного появления посторонних корней

Если для получения уравнения-следствия не использовать никакие «экзотические» преобразования, а использовать только основные преобразования уравнений , то посторонние корни могут возникнуть лишь по двум причинам:

  • из-за расширения ОДЗ и
  • из-за возведения обеих частей уравнения в одну и ту же четную степень.

Здесь стоит напомнить, что расширение ОДЗ в результате преобразования уравнения в основном происходит

  • При сокращении дробей;
  • При замене нулем произведения с одним или несколькими нулевыми множителями;
  • При замене нулем дроби с нулевым числителем;
  • При использовании некоторых свойств степеней, корней, логарифмов;
  • При использовании некоторых тригонометрических формул;
  • При умножении обеих частей уравнения на одно и то же выражение, обращающееся в нуль на ОДЗ для этого уравнения;
  • При освобождении в процессе решения от знаков логарифмов.

Пример из предыдущего пункта статьи иллюстрирует появление постороннего корня из-за расширения ОДЗ, которое имеет место при переходе от уравнения к уравнению-следствию x·(x−1)=0 . ОДЗ для исходного уравнения есть множество всех действительных чисел, за исключением нуля, ОДЗ для полученного уравнения есть множество R, то есть, ОДЗ расширяется числом нуль. Это число в итоге и оказывается посторонним корнем.

Также приведем пример появления постороннего корня из-за возведения обеих частей уравнения в одну и ту же четную степень. Иррациональное уравнение имеет единственный корень 4 , а следствие этого уравнения, полученное из него путем возведения обеих частей уравнения в квадрат, то есть, уравнение , имеет два корня 1 и 4 . Из этого видно, что возведение обеих частей уравнения в квадрат привело к появлению постороннего корня для исходного уравнения.

Заметим, что расширение ОДЗ и возведение обеих частей уравнения в одну и ту же четную степень, не всегда приводит к появлению посторонних корней. Например, при переходе от уравнения к уравнению-следствию x=2 ОДЗ расширяется с множества всех неотрицательных чисел до множества всех действительных чисел, но посторонние корни не появляются. 2 – это единственный корень как первого, так и второго уравнения. Также не происходит появления посторонних корней при переходе от уравнения к уравнению-следствию . Единственным корнем и первого, и второго уравнения является x=16 . Именно поэтому мы говорим не о причинах появления посторонних корней, а о причинах возможного появления посторонних корней.

Что такое отсеивание посторонних корней?

Термин «отсеивание посторонних корней» лишь с натяжкой можно назвать устоявшимся, он встречается далеко не во всех учебниках алгебры, но является интуитивно понятным, из-за чего обычно и используется. Что понимают под отсеиванием посторонних корней, становится понятно из следующей фразы: «… проверка – обязательный этап решения уравнения, который поможет обнаружить посторонние корни, если они есть, и отбросить их (обычно говорят «отсеять»)» .

Таким образом,

Определение

Отсеивание посторонних корней – это обнаружение и отбрасывание посторонних корней.

Теперь можно переходить к способам отсеивания посторонних корней.

Способы отсеивания посторонних корней

Проверка подстановкой

Основной способ отсеивания посторонних корней – это проверка подстановкой. Он позволяет отсеять посторонние корни, которые могли возникнуть и по причине расширения ОДЗ, и по причине возведения обеих частей уравнения в одну и ту же четную степень.

Проверка подстановкой состоит в следующем: найденные корни уравнения-следствия по очереди подставляются в исходное уравнение или в любое равносильное ему уравнение, те из них, которые дают верное числовое равенство, являются корнями исходного уравнения, а те, которые дают неверное числовое равенство или выражение, не имеющее смысла, являются посторонними корнями для исходного уравнения.

Покажем на примере, как проводится отсеивание посторонних корней через подстановку в исходное уравнение.

В некоторых случаях отсеивание посторонних корней целесообразнее проводить другими способами. Это относится в основном к тем случаям, когда проверка подстановкой связана со значительными вычислительными трудностями или когда стандартный способ решения уравнений какого-то определенного вида предполагает другой проверки (например, отсеивание посторонних корней при решении дробно-рациональных уравнений проводится по условию не равенства нулю знаменателя дроби). Разберем альтернативные способы отсеивания посторонних корней.

По ОДЗ

В отличие от проверки подстановкой, отсеивание посторонних корней по ОДЗ уместно не всегда. Дело в том, что этот способ позволяет отсеивать лишь посторонние корни, возникающие по причине расширения ОДЗ, и он не гарантирует отсеивание посторонних корней, которые могли возникнуть по другим причинам, например, из-за возведения обеих частей уравнения в одну и ту же четную степень. Более того, не всегда просто отыскать ОДЗ для решаемого уравнения. Тем не менее, способ отсеивания посторонних корней по ОДЗ стоит держать на вооружении, так как часто его использование требует меньших вычислительных работ, чем использование других способов.

Отсеивание посторонних корней по ОДЗ проводится следующим образом: все найденные корни уравнения-следствия проверяются на предмет принадлежности области допустимых значений переменной для исходного уравнения или любого равносильного ему уравнения, те из них, которые принадлежат ОДЗ, являются корнями исходного уравнения, а те из них, которые не принадлежат ОДЗ, являются посторонними корнями для исходного уравнения.

Анализ приведенной информации приводит к выводу, что отсеивание посторонних корней по ОДЗ целесообразно проводить, если единовременно:

  • легко находится ОДЗ для исходного уравнения,
  • посторонние корни могли возникнуть только по причине расширения ОДЗ,
  • проверка подстановкой связана со значительными вычислительными сложностями.

Покажем, как проводится отсеивание посторонних корней, на практике.

По условиям ОДЗ

Как мы сказали в предыдущем пункте, если посторонние корни могли возникнуть лишь по причине расширения ОДЗ, то их можно отсеять по ОДЗ для исходного уравнения. Но не всегда просто найти ОДЗ в виде числового множества. В таких случаях можно проводить отсеивание посторонних корней не по ОДЗ, а по условиям, определяющим ОДЗ. Разъясним, как проводится отсеивание посторонних корней по условиям ОДЗ.

Найденные корни по очереди подставляются в условия, определяющие ОДЗ для исходного уравнения или любого равносильного ему уравнения. Те из них, которые удовлетворяют всем условиям, являются корнями уравнения. А те из них, которые не удовлетворяют хотя бы одному условию или дают не имеющее смысла выражение, являются посторонними корнями для исходного уравнения.

Приведем пример отсеивания посторонних корней по условиям ОДЗ.

Отсеивание посторонних корней, возникающих из-за возведения обеих частей уравнения в четную степень

Понятно, что отсеивание посторонних корней, возникающих из-за возведения обеих частей уравнения в одну и ту же четную степень, можно осуществить путем подстановки в исходное уравнение или в любое равносильное ему уравнение. Но такая проверка может быть связана со значительными вычислительными трудностями. На этот случай стоит знать альтернативный способ отсеивания посторонних корней, о котором мы сейчас и поговорим.

Отсеивание посторонних корней, которые могут возникнуть при возведении в одну и ту же четную степень обеих частей иррациональных уравнений вида , где n – некоторое четное число, можно проводить по условию g(x)≥0 . Это вытекает из определения корня четной степени: корень четной степени n есть неотрицательное число, n -ая степень которого равна подкоренному числу, откуда . Таким образом, озвученный подход представляет собой своего рода симбиоз метода возведения обеих частей уравнения в одну и ту же степень и метода решения иррациональных уравнений по определению корня. То есть, уравнение , где n –четное число, решается методом возведения обеих частей уравнения в одну и ту же четную степень, а отсеивание посторонних корней выполняется по условию g(x)≥0 , взятому из метода решения иррациональных уравнений по определению корня.