Цель водоподготовки для ТЭЦ. Качество обессоленной воды для ТЭЦ. Достоинства и недостатки мембранных технологий. Анализ современных технологий водоподготовки на тэс

Г. Москва;
д.т.н. Е.Н. Бушуев, профессор,
к.т.н. Н.А. Еремина, доцент,
ФГБОУВПО ИГЭУ, г. Иваново

Водоподготовительная установка (ВПУ) на ТЭС призвана восполнять потери водного теплоносителя в основном контуре. Существует большое количество возможных вариантов схем водоподготовки для получения обессоленной воды на ТЭС.

Наибольшее распространение в нашей стране получила технология химического обессоливания на базе прямоточных ионитных фильтров. Эта технология применяется уже несколько десятилетий и показала себя вполне надежной для вод малой и средней минерализации (+<5 мг-экв/дм 3). Для вод с высокой минерализацией (+>5 мг- экв/дм 3) или при повышенном содержании органических соединений (Ок>20 мгО/дм 3) используют термическое обессоливание .

В природной воде постоянно отмечается рост загрязненности техногенными органическими соединениями: удобрениями, ядохимикатами, нефтепродуктами и т.д. Традиционные химические технологии водоподготовки удаляют эти загрязнения недостаточно эффективно, что приводит к образованию в конденсатно-питательном тракте потенциально кислых веществ, и, как следствие, к многочисленным фактам нарушения ВХР .

Ужесточение экологических требований к сточным водам водоподготовительных установок, с одной стороны, ухудшение качества обрабатываемой воды, с другой, удорожание реагентов, ионитов, а также высокие эксплуатационные затраты привели к необходимости совершенствования традиционных технологий и созданию новых схем обессоливания.

Наиболее перспективными технологиями обработки вод невысокой минерализации с повышенным содержанием органических примесей, что характерно для поверхностных вод центра и севера России, являются: противоточное ионирование и обессоливание на основе мембранных методов.

Новые ВПУ, основанные на противоточных технологиях, внедрены на Калининской АЭС, ТЭЦ-ЭВС-2 ОАО «Северсталь» и др. В настоящее время накоплен первый опыт эксплуатации новых установок, частично или полностью укомплектованных импортным оборудованием и фильтрующими материалами, не всегда учитывающих особенности примесей природных вод, иногда упрощенных в целях снижения капитальных затрат.

ВПУ номинальной производительностью 1700 м 3 /ч находится в эксплуатации на ТЭЦ- ЭВС-2 ОАО «Северсталь». Установка предназначена для выработки глубоко умягченной воды (Жо<10 мкг-экв/дм 3) и включает две стадии обработки исходной (р. Шексна) воды: осветление на механических однокамерных фильтрах (12 шт. с единичной производительностью 145 м 3 /ч) с периодическим подключением контактной коагуляции и Na-катионирование на противоточных фильтрах (4 шт. с единичной производительностью 585 м 3 /ч).

Противоточный Na-катионитный фильтр предполагает фильтрацию осветленной воды снизу вверх с расходом от 170 до 585 м 3 /ч. Фильтр представляет собой двухкамерный аппарат (D=3,8 м) с тремя дренажными устройствами типа «ложное дно» и тысячей колпачковых элементов в каждом устройстве, перекрывающем все поперечное сечение фильтра. Фильтр загружен катионитом С-100 (объем ионита - 30 м 3: 10 - внизу и 20 - сверху) с плавающим слоем инерта.

По результатам лабораторных исследований и промышленных испытаний было установлено, что данный катионит устойчиво работает с рабочей обменной емкостью Ер=1200÷1400 г-экв/м 3 при удельном расходе соли на регенерацию 100 г/г экв. При нагрузке в диапазоне 170÷500 м 3 /ч на один фильтр (скорость фильтрации до 50 м/ч, диаметр 3,8 м) жесткость умягченной воды держится на уровне 2 мкг-экв/дм 3 . Первые фильтроциклы составили 25000 м 3 , через год фильтроцикл снизился до 18000-20000 м 3 .

Высокое качество химочищенной воды при большой единичной производительности ионитных фильтров обеспечивается глубокой автоматизацией управления, как отдельными фильтрами, так и всей установки в целом. Установка может работать и периодически работает в полностью автоматическом режиме. При этом оперативный персонал контролирует состояние технологического процесса по компьютерным экранным формам визуализации и в любой момент может переключить управление установкой на ручной режим.

Данная установка отработала под контролем сотрудников кафедры ХХТЭ ИГЭУ почти год большей частью в автоматическом режиме . Выработка умягченной воды за фильтроцикл составила 20000 м 3 , против 6000-8000 м 3 на традиционных прямоточных фильтрах в равных условиях. Удельные расходы соли снижены на 20%, расход воды на собственные нужды Nа-катионитного фильтра составил 1% по сравнению с 35% по традиционной технологии.

Опыт эксплуатации противоточных технологий доказывает их преимущества по сравнению с традиционными: снижение количества необходимого водоподготовительного оборудования; высокие обменные емкости ионитов; высокое качество фильтрата, которое обеспечивается при небольших расходах реагентов на регенерацию - 1,8-2,2 г-экв/г-экв; уменьшение количества высокоминерализованных сточных вод.

Однако, из-за отсутствия второй (барьерной) ступени и трудности определения момента вывода на регенерацию отключение противоточного фильтра часто проводится по количеству пропущенной воды со значительным запасом, что ведет к недовыработке обессоленной воды. При противоточной регенерации увеличивается интенсивность регенерации и, как следствие, количество переключений, что требует высокой культуры обслуживания таких установок, надежной арматуры, средств автоматизации и контроля. Все они требуют применения осветленной воды, глубоко очищенной от взвешенных, органических веществ, а также соединений железа. Эффективность применения противотока тем выше, чем качественнее поступающая на фильтры вода.

В последнее время большое внимание уделяется малореагентным методам и прежде всего мембранным технологиям.

Некоторые новые ВПУ основаны на применении обратного осмоса для деминерализации воды с использованием в качестве предочистки традиционных технологий (осветлителей, механических фильтров). Примерами таковых являются ВПУ , ТЭЦ ОАО «Северсталь», (рис. 1). Использование обратного осмоса дает возможность извлекать на одной ступени очистки до 96-98% солей, что близко к эффективности одной ступени ионного обмена.

Система доочистки пермеата может состоять из ступени ионного обмена с раздельным Н- и ОН-ионированием (прямоточным или противоточным), и (или) с фильтром смешанного действия. Поскольку на такую установку поступает частично обессоленная вода, ресурс фильтров значителен и достигает десятков и сотен тысяч кубических метров.

Сравнение экономической эффективности обессоливания воды ионным обменом и обратным осмосом показало, что при солесодержании более 150-300 мг/л обратный осмос экономичнее даже противоточного ионирования .

Имеющийся опыт эксплуатации установок обратного осмоса (УОО) свидетельствует о том, что основным фактором, от которого зависит работа мембран, является соблюдение норм качества воды, подаваемой на обработку. Производителями мембран к питательной воде, идущей на УОО, предъявляют требования, представленные в табл. 1 .

Таблица 1. Требования к воде, поступающей на УОО.

Анализ этих требований показывает, что нет ограничений на содержание солей, содержащихся в поверхностных водоисточниках, на работу в широком диапазоне показателя рН. Ограничивается лишь содержание тех веществ, которые могут привести к отравлению или забиванию мембран. Традиционные для водоподготовки показатели качества осветления воды (концентрация взвешенных веществ, мутность по «кресту», прозрачность, цветность, окисляемость) не дают адекватного представления о взаимосвязи между производительностью мембран и загрязнением их поверхности и пор осадками взвешенных и коллоидных частиц. Фирмы- производители обратноосмотических элементов оценивают качество обрабатываемой воды, прежде всего, показателем SDI . Предельно допустимое SDI - 5, а при значениях SDI от 3 до 5 производители относят такие воды к проблемным, устойчивая работа обратноосмотического элемента гарантируется при SDI<3.

Однако, опыт показывает, что в схемах с традиционной технологией предочистки, качество воды, поступающей на УОО, часто не отвечает требованиям по содержанию железа и окисляемости. Необходимое качество такой воды может быть достигнуто применением ультрафильтрации на стадии предочистки (рис. 2).

Ультрафильтрация (УФ) позволяет не только получать воду, практически свободную от механических примесей, но и совместно с коагуляцией удалять значительное количество органики (до 60% от исходного количества), а также кремниевую кислоту. В качестве примера можно привести результаты работы установки ультрафильтрации на (источник водоснабжения - река Суда) (табл. 2).

Таблица 2. Результаты работы установки УФ.

Внедрение УФ на стадии предочистки значительно увеличило производительность обратноосмотических мембран, в несколько раз сократило частоту химических промывок, высвободило производственные площади, уменьшило расход коагулянта, обеспечило возможность отказа от извести.

Совместное использование ультрафильтрации и обратного осмоса дает возможность создать малореагентную систему водоподготовки для получения фильтрата с удельной электропроводностью на уровне 1-5 мкСм/см. В таких схемах дальнейшее доведение качества воды до нормативных значений обычно производится ионообменным (рис. 2) методом.

Надежность комбинированной мембранноионообменной установки (рис. 2) большая, поскольку даже при возможных нарушениях работы системы обратного осмоса, узел доочистки обеспечит заданное качество воды. Вместе с тем, сохраняется необходимость в использовании кислоты и щелочи, поэтому данная технология, хоть и в меньшей степени, имеет те же недостатки, что и традиционная. Такая технология применяется на , и т.д.

Основным недостатком всех мембранных систем является достаточно низкий коэффициент использования исходной воды. Если в традиционной ионообменной схеме с коагуляцией и механической фильтрацией собственные нужды составляют 10-20%, то для типичного сочетания ультрафильтрации и обратного осмоса этот показатель 40-50%. Однако следует учитывать, что концентраты от установок ультрафильтрации и обратного осмоса по солесодержанию часто находятся в пределах нормируемых значений и могут быть беспрепятственно сброшены.

Комбинированные мембранно-ионообменные схемы, имеющие высокую степень экономической эффективности и надежности, являются оптимальным и рекомендуемым методом при реконструкции существующих ВПУ, где уже имеются ионообменные фильтры, реагентное хозяйство и системы сбора и нейтрализации стоков. Количество концентрированных сточных вод и расход реагентов в этом случае в десятки раз меньше, чем при чисто ионообменной схеме. Полученные сточные воды могут быть разбавлены до допустимых норм концентратом мембранных установок.

С точки зрения обеспечения минимального расхода реагентов и наивысшей экологичности при высоком качестве обессоленной воды наибольшую эффективность имеют комплексные ВПУ, состоящие исключительно из мембранных модулей различного назначения: ультра- и нанофильтрации, обратного осмоса, мембранной дегазации и электродеионизации, называемых в целом - интегрированные мембранные технологии (ИМТ) .

В комплексной мембранной установке (рис. 3) вода доочищается на узле электродеионизации. Электродеионизация (ЭДИ, EDI) - это процесс непрерывного обессоливания воды с использованием ионообменных смол, ионоселективных мембран и постоянного электрического поля.

При степени использования исходной воды 90-95% очищенная вода имеет удельную электропроводность на уровне 0,1 мкСм/см (табл. 3), а также минимальное кремнесодержание и общий органический углерод. При этом солесодержание концентрата обычно ниже, чем солесодержание воды, подаваемой на установку обратного осмоса, поэтому он весь возвращается на вход этой установки на повторное использование.

Таблица 3. Характеристики работы установок электродеионизации.

Все производители установок электродеионизации предъявляют очень высокие требования к воде, подаваемой на установку ЭДИ вне зависимости от ее конструкции (табл. 4).

Таблица 4. Типичные требования производителей к питающей воде установок ЭДИ.

Для повышения надежности работы комплексных мембранных систем водоподготовки на базе ИМТ требуется использование на стадии предварительного обессоливания двухступенчатого обратного осмоса. В этом случае качество воды, питающей установку электродеионизации, заведомо выше требований производителей и любые нарушения в работе установок обратного осмоса становятся некритичными. При ухудшении эффективности работы первой ступени (естественно в допустимых пределах) заданное качество гарантированно обеспечит вторая ступень.

Комплексная мембранная установка для подготовки глубоко обессоленной воды, выполненная в соответствии с данной схемой, обеспечивает минимальный объем отходов. Отпадает необходимость в кислотно-щелочном хозяйстве, снижаются эксплуатационные расходы и резко улучшаются экологические параметры.

Такие установки наиболее целесообразны для вновь строящихся объектов. Особенно это актуально для труднодоступных районов, куда затруднен подвоз реагентов. Комплексная мембранная установка успешно эксплуатируется на .

Общим элементом во всех рассмотренных схемах обессоливания на основе мембранных методов является установка обратного осмоса. При эксплуатации водоподготовительной установки производительность постоянно меняется. Часто возникает значительное снижение производительности, связанное с остановом части теплоэнергетического оборудования или прекращения отдачи производственного пара потребителю, что ведет к проблеме обеспечения минимального расхода обрабатываемой воды через УОО.

При неполной загрузке основного оборудования блоков ПГУ-325 на снижается потребность в обессоленной воде. Это обуславливает неполную загрузку УОО. Изначально на ИвПГУ было спроектировано и эксплуатировалось 2 параллельно работающих УОО (рис. 4,а). Во время простоя одной из УОО, она либо ставится на консервацию, либо ежедневно производится циркуляция воды по корпусам УОО для предотвращения возникновения отложений. Это приводит к дополнительным потерям и увеличению себестоимости обессоленной воды.

Поскольку реагенты, используемые для консервации УОО, имеют достаточно высокую стоимость, и периодически требуется подключение второй установки обратного осмоса, то при работе одного из блоков консервация является неэффективным мероприятием.

Для предотвращения потерь, экономии химических реагентов для регенерации ФСД были предусмотрены мероприятия, позволяющие снизить дополнительные потери при простое оборудования: последовательное включение УОО 1 и УОО 2 в работу (рис. 4,б). Каждая установка включает 4 корпуса, также работающие по двухступенчатой схеме (рис. 5).

При последовательном включении установок обратного осмоса (рис. 4) пермеат с УОО 2, работающей как I ступень, подается на УОО 1 (II ступень). При этом концентрат с УОО 2 сбрасывается в канализацию, а с УОО 1 смешивается с исходной водой, подаваемой на I ступень.

Исходная вода подается на установку обратного осмоса на корпуса АО1-АО3 (рис. 5), затем пермеат подается на ФСД, а концентрат подается на АО4, где также разделяется на пермеат и концентрат. Пермеат подается на ФСД, а концентрат сбрасывается в канализацию.

После предварительных расчетов в феврале 2012 г. были проведены промышленные испытания работы УОО 1 и УОО 2, включенных последовательно. Результаты расчетов приведены в табл. 5, на рис. 6 приведены результаты испытаний.

Показатель Известкование+коагуля ция сульфатом железа Коагуляция

сульфатом

алюминия

при включении УОО в одну ступень при включении УОО в две ступени
Производительность установки, м 3 /ч 18 18 18
Суммарный часовой расход воды, поступающей на УОО, м 3 /ч 22,06 21,96 21,96
Производительность осветлителя ВТИ-100, м 3 /ч 30,2 28,65 30,03
Фильтроцикл ФСД, м 3 21240 63720 63720
Расход кислоты на регенерацию, т/год 0,54 0,16 0,16
Расход щелочи на регенерацию, т/год 0,54 0,16 0,16

Полученные данные доказывают повышение качества обессоленной воды после второй ступени обработки на УОО. Содержание ионов натрия, кремнекислоты и электропроводность снижаются более чем в 3 раза, также снижается содержание соединений железа и хлоридов.

Прослеживая динамику изменения качества обессоленной воды, можно отметить, что двухступенчатое обессоливание на УОО не позволяет достаточно снизить значение электропроводности, однако, позволяет получить требуемые параметры качества воды по содержанию соединений кремнекислоты и натрия для добавочной воды для подпитки котлов-утилизаторов. Повышение качества исходной воды для ФСД позволяет снизить ионную нагрузку на них более, чем в 3 раза, что приводит к значительному увеличению фильтроцикла, уменьшению количества воды, используемой на собственные нужды ВПУ, снижению потребности в кислоте и щелочи для регенерации. Следовательно, снижается экологический ущерб, наносимый окружающее среде.

Испытания с коагулянтом - сульфатом алюминия при двухступенчатой схеме работы установок обратного осмоса показали, что существует возможность улучшить качество воды, идущей на УОО, и повысить ресурс работы патронных фильтрующих элементов для УОО.

Таким образом, на отечественном энергетическом рынке появилось большое количество нового водоподготовительного оборудования с высокими экологическими характеристиками. Широкому внедрению их в производство мешает отсутствие нормативной базы на их использование и противоречивый опыт эксплуатации головных установок на отечественных ТЭС, особенно для вод с повышенным содержанием органических веществ.

Литература

1. СО 153-34.20.501-2003 (РД 34.20.501-95). Правила технической эксплуатации электрических станций и сетей Российской Федерации. Утв. Приказом Министерства энергетики Российской Федерации от 19 июня 2003 г. № 229. - М.: СПО ОРГРЭС, 2003.

2. Ходырев Б.Н., Кривчевцов А.Л., Соколюк А.А. Исследование процессов окисления органических веществ в теплоносителе ТЭС и АЭС // Теплоэнергетика. 2010. С. 11-16.

3. Опыт освоения новых технологий обработки воды на ТЭС / Б.М. Ларин, А.Н. Коротков, М.Ю. Опарин и др. // Теплоэнергетика. № 8. 2010. С. 8-13.

4. Проектные решения водоподготовительных установок на основе мембранных технологий / А.А. Пантелеев, Б.Е. Рябчиков, А.В.Жадан и др. // Теплоэнергетика. 2012. № 7. С. 30-36.

5. Пуск системы водоподготовки ПГУ-410 на Краснодарской ТЭЦ / А.А. Пантелеев, А.В.Жадан, С.Л. Громов и др. // Теплоэнергетика. 2012. № 7.

Одним из самых важных вопросов в энергетике была и остается водоподготовка на ТЭЦ. Для предприятий энергетики вода - основной источник их работы и потому к ее содержанию предьявляются очень высокие требования. Поскольку Россия - страна с холодным климатом, постоянными сильными морозами, то работа ТЭЦ - это, то от чего зависит жизнь людей. Качество воды, подаваемой на теплоэгергоцентраль влияет очень сильно на ее работу. Жесткая вода выливается в очень серьезную проблему для паровых и газовых котельных, а также паровых турбин ТЭЦ, которые обеспечивают город теплом и горячей водой. Чтобы четко понимать, как и на что именно отрицательно влияет жесткая вода, не мешало бы сперва разобраться, что такое ТЭЦ? И с чем ее "едят"? Итак, ТЭЦ - теплоэнергоцентраль - это разновидность тепловой станции, которая не только обеспечивает теплом город, но и поставляет в наши дома и на предприятия горячую воду. Такая электростанция устроена как конденсационная электростанция, но отличается от нее тем, что может отобрать часть теплового пара, уже после того, как он отдал свою энергию.

Паровые турбины бывают разными. В зависимости от вида турбины и отбирается пар с различными показателями. Турбины на энергоцентрали позволяют регулировать количество отбираемого пара. Пар, который был отобран, проходит конденсацию в сетевом подогревателе или подогревателях. Вся энергия из него передается сетевой воде. Вода в свою очередь идет на пиковые водогрейные как котельные, так и тепловые пункты. Если на ТЭЦ перекрываются пути отбора пара, она становится обычной КЭС. Таким образом, теплоэнергоцентраль может работать по двум различным графикам нагрузки:

  • · тепловой график - прямопропорциональная зависимость электрической нагрузки от тепловой;
  • · электрический график - тепловой нагрузки либо нет вообще, либо электрическая нагрузка от нее не зависит. Достоинство ТЭЦ состоит в том, что она совмещает как тепловую энергию, так и электрическую. В отличии от КЭС, оставшееся тепло не пропадает, а идет на отопление. В результате растет коэффициент полезного действия электростанции. У водоподготовки на ТЭЦ он составляет 80 процентов против 30 процентов у КЭС. Правда, об экономичности теплоэнергоцентрали это не говорит. Здесь в цене другие показатели - удельная выработка электричества и КПДцикла. К особенностям расположения ТЭЦ следует отнести тот факт, что строить ее следует в черте города. Дело в том, что передача тепла на расстояния нецелесообразна и невозможна. Поэтому водоподготовка на ТЭЦ всегда строят рядом с потребителями электроэнергии и тепла. Из чего состоит оборудование водоподготовки для ТЭЦ? Это турбины и котлы. Котлы производят пар для турбин, турбины из энергии пара производят энергию электричества. Турбогенератор включает в себя паровую турбину и синхронный генератор. Пар в турбинах получают за счет применения мазута и газа. Эти вещества и нагревают воду в котле. Пар под давлением прокручивает турбину и на выходе получается электроэнергия. Отработанный пар поступает в дома в виде горячей воды для бытовых нужд. Потому то, отработанный пар и должен иметь определенные свойства. Жесткая вода со множеством примесей не даст получить качественный пар, который к тому же можно потом поставить людям для использования в быту. Если пар не отправляют на поставку горячей воды, то его тут же в ТЭЦ охлаждают в градирнях. Если вы видели когда-нибудь огромные трубы на тепловых станциях и как их них валит дым, то это и есть градирни, а дым, вовсе не дым, а пар, который подымается от них, когда происходит конденсация и охлаждение. Как работает водоподготовка на ТЭ? Больше всего влиянию жесткой воды здесь поддается турбина и, конечно же, котлы, которые преобразовывают воду в пар. Главная задача любой ТЭЦ получить в котле чистую воду. Чем так плоха жесткая вода? Каковы ее последствия и почему они обходятся нам так дорого? Жесткая вода отличается от обычной высоким содержанием солей кальция и магния. Именно эти соли под воздействием температуры оседают на нагревательном элементе и стенках бытовых приборов. То же относится и к паровым котлам. Накипь образовывается в месте нагрева и точке кипения по краям самого котла. Удаление накипи в теплообменнике в таком случае затруднено, т.к. накипь нарастает на огромном оборудовании, внутри труб, всевозможных датчиков, систем автоматизации. Промывка котла от накипи на таком оборудовании - это целая многоэтапная система, которая может даже проводится при разборе оборудования. Но это в случае высокой плотности накипи и больших ее залежей. Обычное средство от накипи в таких условиях конечно не поможет. Если говорить о последствиях жесткой воды для быта, то это и влияние на здоровье человека и удорожание использования бытовых приборов. К тому же жесткая вода очень плохо контактирует с моющими средствами. Вы станете использовать на 60 процентов больше порошка, мыла. Расходы будут расти как на дрожжах. Умягчение воды потому и было придумано, чтобы нейтрализовать жесткую воду, ставишь себе в квартиру один умягчитель воды и забываешь, что есть очистка от накипи, средство от накипи.

Накипь отличается еще и плохой теплопроводимостью. Этот ее недостаток главная причина поломок дорогой бытовой техники. Покрытый накипью тепловой элемент просто перегорает, силясь отдать тепло воде. Плюс из-за плохой растворимости моющих средств, стиральную машинку нужно дополнительно включать на полоскание. Это расходы воды, электричества. С любой стороны, умягчение воды - самый верный и экономически выгодный вариант предотвращения образования накипи. А теперь представьте что такое водоподготовка на ТЭЦ в промышленных масштабах? Там средство от накипи используется галлонами. Промывка котла от накипи проводится периодически. Бывает регулярной и ремонтной. Чтобы удаление накипи проходило более безболезненно и нужна водоподготовка. Она поможет предотвратить образование накипи, защитит и трубы и оборудование. С ней жесткая вода не будет оказывать свое разрушительное воздействие в таких угрожающихмасштабах. Если говорить о промышленности и энергетике, то больше всего жесткая вода приносит неприятностей ТЭЦ и котельным. То есть в тех областях, где происходит непосредственно водоподготовка и нагрев воды и перемещение этой теплой воды по трубам водоснабжения. Умягчение воды здесь необходимо, как воздух. Но поскольку водоподготовка на ТЭЦ это работа с огромными обьемами воды, водоподготовка должна быть тщательно просчитана и продумана с учетом всевозможным нюансов. От анализа химического состава воды да места расположения того или иного умягчителя воды. В ТЭЦ водоподготовка - это не только умягчитель воды, это еще и обслуживание оборудования после. Ведь удаление накипи все равно в этом производственном процессе придется делать, с определенной периодичностью. Здесь применяется не одно средство от накипи. Это может быть и муравьиная кислота, и лимонная, и серная. В различной концентрации, обязательно в виде раствора. И применяют тот или иной раствор кислот в зависимости от того из каких составных частей сделан котел, трубы, контроллер и датчики. Итак, на каких обьектах энергетики нужна водоподготовка? Это котельные станции, котлы, это тоже часть ТЭЦ, водонагревательные установки, трубопроводы. Самыми слабыми местами и ТЭЦ в том числе, остаются трубопроводы. Накапливающаяся здесь накипь может привести и к истощению труб и их разрыву. Когда накипь не удаляется во время, то она просто не дает воде нормально проходить по трубам и перегревает их. Наряду с накипью второй проблемой оборудования в ТЭЦ является коррозия. Ее также нельзя спускать на самотек. К чему может привести толстый слой накипи в трубах, которые подводят воду на ТЭЦ? Это сложный вопрос, но ответим на него мы теперь зная, что такое водоподготовка на ТЭЦ. Поскольку накипь - отменный теплоизолятор, то и расход тепла резко растет, а теплоотдача наоборот снижается. КПД котельного оборудования падает в разы, все это в результате может привести и к разрыву труб и взрыву котла.

Водоподготовка воды на ТЭЦ, это то, на чем нельзя экономить. Если в быту, вы все же подумаете, купить ли умягчитель воды или выбрать средство от накипи, то для теплового оборудования такой торг недопустим. На теплоэнергоцентралях подсчитывают каждую копейку, поэтому очистка от накипи при отсутствии системы умягчения обойдется куда дороже. Да и сохранность приборов, их долговечность и надежная эксплуатация тоже играют свою роль. Очищенное от накипи оборудование, трубы, котлы работают на 20-40 процентов эффективнее, чем оборудование не прошедшее очистку или работающее без системы умягчения. Главная особенность водоподготовки воды на ТЭЦ состоит в том, что здесь требуется глубоко обессоленная вода. Для этого нужно использовать точное автоматизированное оборудование. На таком производстве чаще всего применяют установки обратного осмоса и нанофильтрации, а также электродеионизации. Какие этапы включает в себя водоподготовка в энергетике в том числе и на теплоэнергцентрали? Первый этап включает в себя механическую очистку от всевозможных примесей. На этом этапе из воды удаляются все взвешенные примеси, вплоть до песка и микроскопических частиц ржавчины и т.п. Это так называемая грубая очистка. После нее вода выходит чистой для глаз человека. В ней остаются только растворенные соли жесткости, железистые соединения, бактерии и вирусы и жидкие газы.

Разрабатывая систему водоподготовки воды нужно учитывать такой нюанс, как источник водопоставки. Это водопроводная вода из систем централизованного водоснабжения или это вода из первичного источника? Разница в водоподготовке состоит в том, что вода из систем водоснабжения уже прошла первичную очистку. Из нее нужно убирать только соли жесткости, и обезжелезивать при необходимости. Вода из первичных источников - это вода абсолютно не обработанная. То есть, имеем дело с целым букетом. Здесь обязательно нужно проводить химический анализ воды, чтобы понимать с какими примесями имеем дело и какие фильтры ставить для умягчения воды и в какой последовательности. После грубой очистки в системе идет следующий этап под названием ионообменное обезсоливание. Здесь устанавливают ионообменный фильтр. Работает на основе ионообменных процессов. Главный элемент - ионообменная смола, которая включает в себя натрий. Он образует со смолой непрочные соединения. Как только жесткая вода на ТЭЦ попадает в такой умягчитель, то соли жесткости мгновенно выбивают натрий из структуры и прочно встают на его место. Восстанавливается такой фильтр очень просто. Картридж со смолой перемещается в бак регенерации, где находится насыщенный соляной раствор. Натрий снова занимает свое место, а соли жесткости вымываются в дренаж. Следующий этап - это получение воды с заданными характеристиками. Здесь применяют установку водоподготовки воды на ТЭЦ. Главное ее достоинство - получение 100-процентно чистой воды, с заданными показателями щелочности, кислотности, уровнем минерализации. Если предприятию нужна техническая вода, то установка обратного осмоса создавалась именно на такие случаи.

Главной составляющей частью этой установки является полунепроницаемая мембрана. Селективность мембраны меняется, в зависимости от ее сечения можно получить воду с разными характеристиками. Эта мембрана разделяет бак на два части. В одной части находится жидкость с высоким содержанием примесей, в другой части жидкость с низким содержанием примесей. Воду запускают в высококонцентрированный раствор, она медленно просачивается через мембрану. На установку подается давление, под воздействием его вода останавливается. Потом давление резко увеличивают, и вода начинает течь обратно. Разность этих давлений называют осматическим давлением. На выходе получается идеально чистая вода, а все отложения остаются в менее концентрированном растворе и выводятся в дренаж.

Нанофильтрация по сути тот же обратный осмос, только низконапорный. Поэтому принцип действия тот же, только напор воды меньше. Следующий этап - устранение из воды, растворенных в ней газов. Поскольку в ТЭЦ нужен чистый пар без примесей, очень важно удалить из воды, растворенные в ней кислород, водород и углекислый газ. Устранение примесей жидких газов в воде называется декарбонацией и деаэрацией. После этого этапа вода готова для подачи в котлы. Пар получается именно той концентрации и температуры, которая необходима.

Как видно, из всего вышеописанного, водоподготовка воды в ТЭЦ - один самых главных составляющих производственного процесса. Без чистой воды, не будет качественного хорошего пара, а значит, не будет электричества в нужном обьеме. Поэтому водоподготовкой в теплоэнергоцентралях нужно заниматься плотно, доверять эту службу исключительно профессионалам. Правильно спроектированная система водоподготовки - это гарантия долгосрочной службы оборудования и получения качественных услуг энергопоставок.

В нашей стране основная часть вырабатываемой электроэнергии (83 %) приходится на ТЭС на органическом и ядерном топливе.

Рост выработки электрической энергии обусловлен не только введением новых мощностей, но и надежностью, бесперебойной рабо­той действующего оборудования. ТЭЦ и ТЭС в настоящее время ра­ботают в основном на высоких и сверхвысоких параметрах, растут единичные мощности агрегатов на ТЭС и ТЭЦ и в целом, мощности электростанций. Все это повышает требования к экономичности и на­дежности работы основных агрегатов электростанции.

Вода и водяной пар являются теплоносителями в водном и водопаровом трактах ТЭС, ТЭЦ и АЭС. Для электростанций с блочной схемой установки агрегатов необходимость обеспечения длительной бесперебойном эксплуатации обусловлена тем, что повреждение или выход из строя хотя бы одного из элементов неизбежно вызывает выход из строя всего блока.

Даже кратковременный аварийный простой крупного блока из-за дефектов водного режима (длительная эксплуатация турбоагрегата при сниженных параметрах) повышает стоимость вырабатываемой электроэнергии.

Одним из факторов, обуславливающих важное значение водной проблемы, является значительный рост удельных тепловых нагрузок парообразующих труб котельного агрегата, что требует же­сткого ограничения допустимой величины отложений на поверхно­стях нагрева в целях обеспечения надежного температурного режима металла этих поверхностей, а тем самым и продолжительности рабо­чего времени котельного агрегата. Для снижения отложений нужно свести к минимуму количество примесей, поступающих в водяной тракт электростанции, и в первую очередь продуктов коррозии основ­ного оборудования и вспомогательного. Также должен быть органи­зован систематический ввод в пароводяной тракт электростанции раз­личных реагентов, которые уничтожают или ограничивают действие наиболее вредных примесей.

Так как турбины высокого давления очень чувствительны к за­грязнению лопаток, то для избежания снижения мощности из-за заноса их проточной части отложениями требуется повысить качество пара.

С повышением параметров пара ускоряются физико-химические процессы накипеобразования, загрязнения пара и коррозии металла, что усложняет поддержание чистоты внутренних поверхностей ко­тельного агрегата и проточной части паровых турбин, а также затруд­няет обеспечение сохранности металла котлов, турбин и оборудова­ния тракта питательной воды.

Таким образом, большое значение имеет подготовка воды на электростанции. Причем вопросы организации рационального водно­го режима ТЭС должны рассматриваться в тесной связи с их гидроди­намическими характеристиками, процессами теплообмена в отдель­ных теплопередающих элементах и физико-химическими процессами загрязнения генерирующего пара.

Обращение воды в рабочем цикле тэс

Вода и водяной пар являются теплоносителями в водном и водопаровом трактах ТЭС, ТЭЦ и АЭС.

При решении водной проблемы ТЭС большое значение имеет то, что переход к высокому и сверхкритическому давлению значи­тельно изменяет условия парообразования, теплообмена при кипении, гидродинамики паровой смеси в трубах котла, а также свойства само­го рабочего тела.

К примеру, с повышением давления резко повышается плот­ность водяного пара, снижается скорость пароводяной смеси в паро­образующих трубах, снижается поверхностное натяжение и вязкость воды, что способствует образованию накипи и коррозии.

С повышением плотности водяного пара повышается его спо­собность к растворению различных химических соединений, содер­жащихся в котловой воде, что приводит к значительному выносу на­ходящихся в воде неорганических примесей.

Вода на ТЭС применяется:

    для производства пара в котлах, испарителях;

    для конденсации отработавшего пара в конденсаторах паро­вых турбин и других теплообменных аппаратах;

    для охлаждения продувочной воды и подшипников дымосо­сов;

    в качестве рабочего теплоносителя в теплофикационных ото­пительных сетях и сетях горячего водоснабжения.

Водяной пар, полученный в котлах, а затем отработавший в тур­бинах, подвергается конденсации или в виде пара пониженных пара­метров используется на производственных и коммунальных предпри­ятиях для технологических процессов, отопления и вентиляции.

Рис. 1.1. Схема КЭС:

1 - паровой котел; 2 - паровая турбина; 3 - электрогенератор; 4 - водоподготовительная установка; 5 - конденсатор; 6 - конденсатный насос; 7 - конденсатоочистка (БОУ); 8 - ПНД; 9 - деаэратор; 10 - питательный насос; 11 – ПВД.

D ИСХ.В. - исходная вода.

D Д.В. - добавочная вода направляется в контур для восполнения потерь пара и конденсата после обработки с применением физико-химических методов очистки.

d Т.К. - турбинный конденсат, содержит небольшое количество растворенных и взвешенных примесей - основная составляющая пи­тательной воды.

D В.К. - возвратный конденсат от внешних потребителей пара, используется после очистки в установке очистки обратного конденсата (7) от внесенных загрязнений. Является составной частью питательной воды.

Dп.в. - питательная вода, подается в котлы, парогенераторы или реакторы для замещения испарившейся воды в этих агрегатах. Пред­ставляет собой смесь D T . K , D Д.В. , D В.К. и конденсируется в элементах указанных агрегатов.

Рис. 1.2. Схема ТЭС:

1 - паровой котел; 2 - паровая турбина; 3 - электрогенератор; 4 - конденсатор; 5 - конденсатный насос; 6 - установка очистки возвратного конденсата; 7 - деаэра­тор; 8 - питательный насос; 9 - подогреватель добавочной воды; 10 - водоподготовка подпитки котлов; 11 - насосы обратного конденсата; 12 - баки возвратного конденсата; 13 - производственный потребитель пара; 14 - промышленный по­требитель пара; 15 - водоподготовка подпитки теплосети.

D ПР - продувочная вода - выводится из котла, парогенератора или реактора на очистку или в дренаж для поддержания в испаряемой (котловой) воде заданных концентраций примесей. Состав и концен­трация примесей в котловой и продувочной воде одинаковы.

D О.В. - охлаждающая или циркуляционная вода, используется в конденсаторах паровых турбин для конденсации отработавшего пара.

D В.П. - подпиточная вода тепловой сети, для восполнения потерь.

Теплоэнергетика в современных условиях выжить без водоподготовки не сможет. Отсутствие очистки воды и умягчения может привести к поломке оборудования, некачественному пару или воде, и как результат, парализации всей системы. Постоянное удаление накипи застраховать вас от таких неприятностей, как повышенный расход топлива, образование и развитие коррозии, не может. Только водоподготовка на ТЭЦ может одним махом решить весь комплекс проблем.

Чтобы лучше разобраться в проблемах использования того или иного на теплоэнергоцентралях, начнем с рассмотрения основных понятий. Что такое теплоэнергоцентраль, и как там может помешать повышенная жесткость воды нормальной работе системы?

Итак, ТЭЦ или теплоэлектроцентраль представляет собой один из видов тепловой электростанции. Ее задача состоит не только в генерации электроэнергии. Это еще и источник тепловой энергии для системы теплоснабжения. С таких станций подают горячую воду и пар для обеспечения тепла в домах и на предприятиях.

Теперь пару слов о том, как работает теплоэлектростанция. Работает она, как конденсационная электростанция. Принципиальное различие водоподготовки на ТЭЦ состоит в том, что из генерируемого тепла ТЭЦ есть возможность часть отобрать для других нужд. Способы забора тепловой энергии зависит от типа паровой турбины, которая установлена на предприятии. Также на ТЭЦ можно регулировать то количество пара, которое вам необходимо отобрать.

Все, что отделено, потом концентрируется в сетевом подогревателе или подогревателях. Они уже передают энергию воде, которая идет дальше по системе для передачи своей энергии в пиковых водогрейных котельных и тепловых пунктах. Если на ТЭЦ такой отбор пара не производят, то такая ТЭЦ имеет право квалифицироваться, как КЭС.

Любая водоподготовка на ТЭЦ работает по одному из двух графиков нагрузки. Один из них тепловой, другой, электрический. Если нагрузка тепловая, то электрическая ей полностью подчинена. У тепловой нагрузки над электрической есть паритет.

Если нагрузка электрическая, то она не зависит от тепловой, возможно тепловой нагрузки нет вообще в системе.

Есть также вариант совмещения водоподготовки на ТЭЦ электрической и тепловой нагрузок. Это помогает остаточное тепло использовать в отоплении. В результате коэффициент полезного действия в ТЭЦ значительно выше, чем у КЭС. 80 против 30 процентов. И еще - при строительстве тепловой электростанции, нужно помнить, что передать тепло на дальние расстояния не получится. Поэтому ТЭЦ должна быть расположена в пределах города, который она питает.

У есть главный недостаток – это нерастворимый осадок, который образуется в результате нагрева такой воды. Удалить его не так просто. На ТЭЦ придется останавливать всю систему, иногда ее разбирать, чтобы качественно во всех поворотах и узких отверстиях почистить накипь.

Как мы уже знаем, главный минус накипи – ее плохая теплопроводимость. Из-за этой особенности и возникают основные расходы и проблемы. Даже легкий налет накипи на поверхностях нагревательных поверхностей или нагревательных элементов вызывают резкий рост расходов топлива.

Устранять накипь постоянно не получится, это можно будет делать хотя бы раз в месяц. Расходы топлива при этом будут постоянно расти, да и работа ТЭЦ оставляет желать лучшего, все отопительно-нагревательное оборудование медленно, но верно покрывается накипью. Чтобы потом ее почистить, придется останавливать всю систему. Терпеть убытки от простоев, но чистить накипь.

О том, что пришло время для чистки вам сообщит само оборудование. Начнут внезапно срабатывать системы защиты от перегрева. Если и после этого не удалить накипь, то она полностью блокирует работу теплообменников и котлов, возможны взрывы, образование свищей. Вы всего-то за несколько минут можете лишиться дорогостоящего промышленного оборудования. И восстановить его невозможно. Только покупать новое.

Да и потом, любая очистка от накипи, это всегда испорченные поверхности. Можно использовать водоподготовку на ТЭЦ, но она за вас накипь не устранит, потом все равно придется отчищать ее с помощью механического оборудования. Имея такие покореженные поверхности, мы рискуем получить резкое развитие не только образования накипи, но еще и коррозии. Для оборудования теплоэлектроцентрали, это большой минус. Поэтому и задумались о создании установки водоподготовки на ТЭЦ .

Водоподготовка на мини ТЭЦ

Если говорить в общем, то состав такой будет зависеть, прежде всего, от химического анализа воды. Он покажет оббьем воды, который нужно очищать каждый день. Она покажет примеси, которые нужно устранить, прежде всего. Обойтись без такого анализа при составлении водоподготовки на мини ТЭЦ нельзя. Даже степень жесткости воды он покажет. Мало ли вдруг вода не настолько жесткая, как вам кажется, и проблема в кремниевых или железистых отложениях, а вовсе не в солях жесткости.

В большинстве своем для оборудования ТЭЦ большую проблему составляют примеси, которые находятся в подпиточной воде. Это те самые соли кальция и магния, а также соединения железа. А это значит, что обойтись без обезжелезивателя и электромагнитного умягчителя воды АкваЩит, как минимум будет сложно.

ТЭЦ, как известно, обеспечивает теплой водой и отоплением дома в городе. Поэтому водоподготовка на мини ТЭЦ всегда будет включать в себя не только стандартные . Здесь без вспомогательных фильтров для воды никак не обойтись. Примерно, всю схему водоподготовки можно представить в виде таких этапов, и содержащихся в них фильтрах.

Для ТЭЦ используют воду из первичных источников, очень загрязненную, поэтому первым этапом водоподготовки на мини ТЭЦ будет осветление. Здесь в большинстве случаев используют механические фильтры, а также отстойники. Последние думаю, понятны всем, там воду отстаивают, чтобы примеси твердые оседали.

Механические фильтры включают в себя несколько решеток из нержавеющей стали. Они улавливают в воде все твердые примеси. Сперва, это крупные примеси, потом средние и в конце совсем мелкие, размером с песчинку. Механические фильтры могут использовать с коагулянтами и флокулянтами, чтобы очищать воду и от вредных бактериологических примесей.

Восстанавливают механические фильтры с помощью обычной обратной промывки простой водой.

Следующий этап водоподготовки на мини ТЭЦ - устранение вредных бактерий и вирусов или дезинфекция. Для этого могут использовать, как дешевую, но вредную хлорку, так и дорогой, но безвредный при полном испарении. озон.

Другой вариант обеззараживания воды – использование ультрафиолетового фильтра. Здесь основу составляет ультрафиолетовая лампа, которая облучает всю воду, проходящую через специальную кювету. Проходя, через такой фильтр вода облучается, и в ней погибают все бактерии и вирусы.

После обеззараживания наступает этап . Здесь могут использоваться самые разные фильтры для воды. Это могут быть ионообменные установки, электромагнитный умягчитель воды Акващит или его магнитная вариация. О преимуществах и минусах каждой установки расскажем чуть позже.

Кроме стандартных фильтров можно еще использовать реагентное отстаивание. Но добавление различных примесей, может вылиться потом в образование не растворимых отложений, которые очень плохо удаляются.

После этапа умягчения настает время для обессоливания воды. Для этого в ход идут анионные фильтры, возможно применение декарбонизатора, электродиадизатора, ну и стандартно обратного осмоса или нанофильтрации.

После тонкой очистки воды, нужно в обязательном порядке из воды убрать остаточные растворенные газы. Для этого проводят деаэрацию воды. Здесь могут применять термические, вакуумные, атмосферные деаэраторы. То есть все, что нужно для подпиточной воды, мы сделали. Теперь остаются уже общие действия по подготовке непосредственно самой системы.

Потом в силу вступает этап продувки котла, для этого используют промывные фильтры для воды и последним этапом водоподготовки на мини ТЭЦ является промывка пара. Для этого применяют целый набор химических реагентов для обезсоливания.

В Европе использование качественной водоподготовки на мини ТЭЦ помогает получить коэффициент полезного действия потерь в размере всего лишь четверть процента в день. Как раз комбинирование традиционных методов умягчения воды и очистки с новейшими технологиями помогает достигнуть таких высоких результатов работы системы водоподготовки на мини ТЭЦ. И при этом сама система бесперебойно может прослужить до 30-50 лет, без кардинальных замен этапов.

А теперь вернемся к системе водоподготовки для ТЭЦ и к водоподготовительной установке для ТЭЦ. Здесь используют весь спектр фильтров, главное это правильно выбрать необходимый прибор. Чаще всего система требует применения ни одного, а сразу нескольких фильтров, соединенных последовательно, чтобы вода прошла и стадию умягчения, и стадию обезсоливания.

Самым наиболее используемым является ионообменная установка. В промышленности такой фильтр выглядит как высокий бак в виде цилиндра. Он в обязательном порядке снабжен баком поменьше, это бак регенерации фильтра. Поскольку ТЭЦ работает с водой круглые сутки, то ионообменная установка будет многоступенчатой и включать в себя будет не один, а иногда и три, и четыре фильтра. На всю эту систему приходится один блок управления или контроллер. Каждый фильтр при этом снабжен своим баком регенерации.

Контроллер тщательно следит за тем, сколько воды прошло через установку. Сколько очистил тот или иной фильтр, четко фиксирует время очистки, скорость очистки, по истечении определенного срока очистки или определенного обьема, она подает сигнал на установку. Жесткую воду перераспределяют на другие фильтры, а загрязненный картридж направляют на восстановление. Для этого из установки его вынимают и переносят в бак для регенерации.

Сам процесс системы водоподготовки для ТЭЦ проходит по следующей схеме. Сердце такого ионообменного картриджа – смола, обогащенная слабым натрием. Когда с ней контактирует жесткая вода, происходят метаморфозы. Сильные соли жесткости заменяют слабый натрий. Постепенно картридж весь забивается солями жесткости. Это и есть время для восстановления.

Когда картридж переносят в бак регенерации, там уже в растворенном виде находятся таблетки соли высокой степени очистки. Соляной раствор, который получается в результате очень насыщенный. Процент содержания соли не менее 8-10 процентов. Но только таким большим количеством солей можно устранить из картриджа сильные соли жесткости. В результате промывки образуются сильносоленые отходы, и картридж, вновь наполненный натрием. Его отправляют работать, а вот с отходами возникает проблема. Чтобы их утилизировать, их нужно повторно очистить, то есть снизить степень солености и получить разрешение на утилизацию.

Это большой минус установки, да и расходы на соли получаются немалыми, что тоже дает дорогое обслуживание установке. Зато скорость очистки воды у этого умягчителя самая высокая.

Следующий популярный вариант системы водоподготовки для ТЭЦ – электромагнитный умягчитель воды АкваЩИт. Здесь основную работу выполняет электрический процессор, плата и мощные постоянные магниты. Все это в комплексе создает мощное электромагнитное поле. В воду эти волны поступают по проводке, намотанной с двух сторон от прибора. Причем, нужно помнить, что наматывать провода нужно в разные стороны друг от друга. Каждый провод должен быть обмотан вокруг трубы, не менее семи раз. Эксплуатируя этот прибор, нужно в обязательном порядке следить, что вода не попадала на проводку.

Сами концы проводов нужно обязательно закрыть изоляционными кольцами или обычной изолентой. Так вот, вода проходит по трубе, ее облучают электромагнитные волны. Многим кажется, что влияние подобного – мифическое. Однако, соли жесткости под его влиянием начинают трансформироваться, теряют былую форму и превращаются в тонкие и острые иголки.

Получив новую форму, прилипать к поверхностям оборудования становится неудобно. Тонкое узкое тело иголки не держится на поверхностях. Но зато отлично отдирает старую накипь от стенок оборудования. И делает это тонко и качественно, не используя при этом ни каких вспомогательных средств. Такая работа является главным козырем электромагнитного умягчителя воды АкваЩит. Он сделает и свою работу, то есть умягчит воду и старую накипь уберет очень качественно. И для этого не придется покупать средства от накипи. Все обеспечат мощные постоянные магниты из редкоземельных металлов и электрический ток.

У данного прибора большое количество преимуществ перед другими установками. За ним не нужно ухаживать, он все делает сам. Он полностью уберет из вашего обихода такое понятие, как очистка от накипи. Он в состоянии работать с любыми поверхностями, главное только монтировать его на чистый отрезок трубы.

Потом электромагнитный прибор может проработать без замен в течение четверти столетия. Такое долгое использование гарантируют как раз редкоземельные металлы, которые со временем не теряют практически своих магнитных свойств. Здесь даже привыкания воды к магнитному воздействию нет. Правда, такой прибор не работает со стоячей водой. Также если вода течет одновременно более, чем в двух направлениях, магнитное поле также не работает.

И наконец, пару слов об обратном осмосе, как системе водоподготовки для ТЭЦ. Обойтись при производстве подпиточной воды без этой установки нельзя. Только она гарантирует практически стопроцентную очистку воды. Здесь есть сменные мембраны, которые позволяют получить воду с заданными характеристиками. Но при этом, прибор нельзя применять самостоятельно. Только в комплекте с другими умягчителями, что делает установку более дорогой. Но стопроцентная компенсирует все минусы дороговизны.

Мы подробно рассмотрели все системы водоподготовки для ТЭЦ. Ознакомились со всеми возможными умягчителями, которые могут использоваться в этой системе. Теперь вы сможете легко ориентироваться в мире умягчения.

Жидкость, используемая в теплоэнергетике, подлежит обязательному очищению как перед ее применением, так и после него. Прохождение через очистительные сооружения позволяет защитить трубы и котлы от возникновения коррозий, образования накипи, а также обеззаразить стоки для дальнейшего их возврата в окружающую среду. Только специалист сможет определить этапы и что применяется для водоподготовки на ТЭЦ после полного химико-биологического анализа. Это позволит выявить необходимость использования определенных реагентов и составить оптимальную схему очистительного сооружения.

На сегодняшний день цель реконструкции системы химической водоподготовки ТЭЦ заключается в получении более качественного сырья при минимальной затрате средств. Учеными предлагаются новые способы фильтрации жидкости, применение безопасных окислителей и нейтрализаторов.

Назначением химического цеха является обеспечение качества технической воды, исходной воды, забираемой из водотоков (водоемов), для подготовки растворов и использования их в системе очистки котлов и поверхностей нагрева, для обеспечения очистки сточных вод от взвешенных веществ и качества очистки стоков на выпусках в открытые водные объекты.

Химическая очистка воды осуществляется в несколько ступеней и включает предварительное ее осветление в осветлителях с применением коагулянта и флокулянта, пропускание через механические катионитовые и анионитовые фильтры. Материал загрузки механических фильтров - кварцевый песок, антрацит; ионитовых фильтров -сульфоуголь (СК-01, СК-2), катиониты КУ-2 и КУ-2-8 в Na-форме, анионит АВ-17-8 и др.

Осветление и умягчение воды

Перед тем, как вода поступит в осветлители, необходимо пропустить её через песколовки. В основном на ТЭЦ используются горизонтальные песколовки, которые рассчитаны на задержание песка размером 0.25 мм, что составляет 65% всего количества песка в сточных водах (рис.3).

Широко применяют отстойник-флокулятор. Внутри отстойника имеется камера флокуляции, в которую через центральную трубу поступает сточная вода. В камере флокуляции происходит эжекция воздуха, частичное окисление органических веществ, хлопьеобразование и сорбция загрязнений. В отстойной зоне вода проходит через слой взвешенного осадка, где задерживаются мелкодисперсные примеси. Выпавший осадок удаляется под действием гидростатического напора.

Рис.4.

Далее чтобы избежать быстрого износа оборудования, необходимо избавиться от жесткости воды. Наиболее эффективным способом борьбы с высокой жесткостью является применение автоматических фильтров-умягчителей. В основе их работы лежит ионообменный процесс, при котором растворенные в воде "жесткие" соли заменяются на "мягкие", которые не образуют твердых отложений.

На электростанциях с открытой системой теплоснабжения согласно схеме рис. 4 вода подвергается содоизвесткованию и коагуляции в осветлителе и собирается в бак осветленной воды, откуда насосами подается на механический фильтр и далее сверху и снизу на двухпоточно-противоточный водород-катионитный фильтр, глубокоумягченная вода отбирается из средней дренажной системы.

Рис. 4. Схема умягчения с утилизацией стоков (ТЭЦ с открытой системой водоснабжения)

1 - осветлитель обессоливающей установки; 2 - бак осветленной воды; 3 - насос осветленной воды; 4 - двухпоточно-противоточный водород-катионитный фильтр; 5 - бак отработавшего раствора кислоты и взрыхляющих вод обессоливающей установки; 6 - насос перекачки отработавших вод в осветлитель; 7 - декарбонизатор; 8 - бак декарбонизированной воды; 9 - насос декарбонизированной воды; 10 - исходная вода; 11 - умягченная вода на обессоливание; 12 - взрыхляющие воды обессоливающей установки; 13 - раствор кислоты;14 - шлам; 15 - растворы соды, извести и коагулянта