Что такое эмбриология в биологии. Что такое эмбриология? Что изучает наука эмбриология? Понятие о науке эмбриологии

Официально эмбриология считается об изучении зародышей и их развития, но на современной практике все чаще специалисты в ней занимаются созданием эмбрионов при помощи искусственного оплодотворения и взращивания их вне матки женщины, чтобы в дальнейшем подселить их для начала беременности. Клиника эмбриологии принимает множество заказов от пар, которые не могут зачать ребенка естественным путем.

Благодаря обширным знаниям и опыту медиков за все годы существования науки за последние полвека был совершен значительный прорыв, позволивший решить многие проблемы с бесплодием. Все, что изучает эмбриология, гистология и репродуктология оказывается полезным для индивидуального подбора метода лечения. Интерес к этому люди проявляли достаточно давно, даже когда не было соответствующих технических возможностей.

История эмбриологии

Еще первобытные народы интересовались особенностями зачатия и развития плодов, так как здоровье у новорожденных даже у одних и тех же родителей было различным, не говоря уже о том, что у некоторых семей не получалось завести ребенка. Научные сведения о зародышах, касающихся птиц и млекопитающих, существовали еще в древнем Египтке, Китае, Греции, Индии и Вавилоне. Но со времен Аристотеля и Гиппократа ситуация мало менялась до начала эпохи Возрождения, когда случился очередной рывок знаний в этой сфере.

Теперь объектом изучения эмбриологии был не только животный мир, но и человеческие особи, хотя церковь не поощряла такие изучения. Исследования проводились тайно. Только в 17 веке Фабрицкий смог зарисовать и описать развитие эмбриона курицы. Тогда многие ученые думали, что все животные развиваются из яиц, некоторые из которых находятся внутри организма. Грааф открыл пузырьки, которые он тогда принял за яйца, но это были части яичников. Только чуть более века спустя было открыто, что существуют женские и мужские половые клетки. Тогда же было выдвинуто предположение, что сперматозоиды и яйцеклетка должны встретиться, чтобы образовать зародыш. Это открытие и заложило основы эмбриологии, которую мы знаем сейчас.

В 18 веке была опубликована «Теория Развития» Вольфа, которая сделала очередной переворот представления и зарождении жизни в организме животных. Этот труд стал основой для позиции эпигенеза в данной области. Но только в первой половине 19 века Карл Фон Бер, основоположник эмбриологии, обосновал все это в своей теории и рассказал о зародышевых листках. Таким образом, основатель эмбриологии положил начало правильному пути исследований, которые привели к тому, что сейчас можно получить эмбрион и обеспечить нормальное его развитие искусственным путем при помощи современных технологий.

Эволюционная эмбриология: методы

Изучение специалистами развития эмбрионов позволил подтвердить эволюционную теорию. Было замечено, что во время развития эмбриона он проходит через несколько стадий, которые совсем не присущи рождающемуся организму. Ярким тому примером является наличие жабр у человеческого эмбриона и прочих вещей и других животных на ранних стадиях развития. Для изучения было использовано несколько методов:

  • Анатомический и эмбриологический – помогают в определении связей между различными живыми организмами за счет изучения их развития в состоянии эмбрионов;
  • Генетические и молекулярные исследования – позволяет определять родственные связи между различными организмами, в том числе и разными природными видами за счет наличия общих предков;
  • Биогеографический метод – изучение распределения видов при помощи географического их распределения.

Эволюционная эмбриология вносит существенный вклад в развитие науки, хоть сейчас и востребованным оказываются другие направления этой науки.

Цитология и эмбриология человека

Долгое время человеческие эмбрионы не изучались, так как церковь имела достаточно большую власть, а с ее точки зрения подобные изучения были богопротивными. Но цивилизация развивалась и роль религии отходила на все более дальний план, так что изучение человека сейчас считается одним из главных направлений эмбриологии.

Существенные результаты работы были получены только в последние 50 лет. Буквально за несколько десятилетий удалось осуществить первое оплодотворение яйцеклетки вне организма женщины, а также успешно подсадить эмбрион для развития в теле и родить здорового ребенка. Эмбриология человека прошла путь от первых процедур ЭКО, где использовался весь сбор спермы, среди которого присутствовали сперматозоиды всех типов, которые имели шанс оплодотворить яйцеклетку, до ИКСИ, где уже брался один конкретный сперматозоид, когда можно было отобрать самого здорового представителя и ввести его в женский материал с помощью иглы.

На данный момент, цитология, гистология, эмбриология, наука о размножении, все это стало очень взаимосвязанным между собой, так как специалисты из этих сфер работают над одной целью, восстановлением репродуктивной функции человека и помощи в зачатии, если не удается все осуществить естественным путем.

Задачи современной эмбриологии

В практической сфере, с которой встречаются многие бездетные пары, эмбриологи занимаются культивацией эмбрионов для дальнейшего подсаживания их в матку. Но на этом задачи науки в целом не ограничиваются, так как некоторые из них не касаются частной жизни человека. К основным направлениям исследования науки относятся:

  • Исследование механизмов и источников развития тканей организма;
  • Изучение критических периодов в начальном развитии организма после оплодотворения;
  • Изучение механизмов, которые поддерживают гомеостаз, а также контролируют репродуктивную функцию;
  • Исследование того, как влияют разнообразные экзогенные и эндогенные факторы, роль микроокружения на строение и развитие половых клеток;
  • Культивация женских и мужских половых клеток, их криозаморозка, создание зародышей и обеспечение им благоприятное развитие о внематочный период, подсаживание плодов в матку.

ЭМБРИОЛОГИЯ

ОСНОВЫ ЭМБРИОЛОГИИ

СВЯЗЬ ИНДИВИДУАЛЬНОГО И ИСТОРИЧЕСКОГО РАЗВИТИЯ ОРГАНИЗМА

Эмбриология (от греч. embryon - зародыш, logos- учение) - наука о зародыше, о закономерностях его развития.

Медицинская эмбриология изучает закономерности развития зародыша человека, структурные, метаболические и функциональные особенности плацентарного барьера (система мать - плацента - плод), причины возникновения уродств и других отклонений от нормы, а также механизмы регуляции эмбриогенеза. Пути и методы влияния на эмбриогенез исследуются главным образом в условиях эксперимента на животных, а также в клинических условиях при патологии беременности. Одним из актуальных аспектов современной эмбриологии является изучение источников и механизмов развития тканей (гистогенез).

В понятие эмбриогенеза включают период от момента оплодотворения до рождения (для живородящих животных), вылупле-ния из яиц (для яйцекладущих), окончания метаморфоза (для животных с личиночной стадией развития).

Эмбриогенез- часть индивидуального развития, т. е. онтогенеза. Он тесно связан с прогенезом (развитие и созревание половых клеток) и ранним постэмбриональным периодом.

Актуальными задачами эмбриологии являются изучение влияния различных эндогенных и экзогенных факторов, роли микроокружения на развитие и строение половых клеток, развитие и взаимоотношение тканей, органов и систем, исследование механизмов, контролирующих репродуктивную функцию и обеспечивающих гомеостаз зародышей человека и млекопитающих, и других факторов, изучение критических периодов развития. Частным, но очень важным вопросом современной эмбриологии является культивирование яйцеклеток, зародышей и имплантация их в матку. Знание условий и факторов оплодотворения и эмбрионального развития позволяет врачам решать такие практически важные проблемы, как искусственное оплодотворение женщин при бесплодных браках, цитодиагностика патологии беременности и др.

Изучению эмбриогенеза человека предшествует краткое изложение основ сравнительной эмбриологии, так как в ходе исторического развития млекопитающих сложились основные этапы, последовательность и закономерности эмбриогенеза.

Процесс эмбрионального развития человека является результатом длительной эволюции и в определенной степени отражает черты развития других форм животного мира. Некоторые ранние стадии развития человека очень сходны с аналогичными стадиями эмбриогенеза более низко организованных хордовых животных.

Идея связи индивидуального и исторического развития была обоснована в начале XIX столетия. В частности, К. Бэр, изучая в сравнительном аспекте развитие некоторых позвоночных, пришел к заключению, что у большой группы животных на ранних стадиях развития проявляется больше сходства, чем частных, индивидуальных различий. По мере увеличения сроков эмбрионального развития это частное, индивидуальное вырисовывается все более отчетливо (закон зародышевого сходства). Ф. Мюллер, изучая развитие личиночных стадий ракообразных, также обнаружил сходство некоторых личиночных форм с вымершими ракообразными. Ч. Дарвин, придавая большое значение явлениям зародышевого сходства, считал это одним из доказательств общности происхождения животного мира.

В конце 60-х годов XIX столетия Э. Геккель сформулировал биогенетический закон, согласно которому индивидуальное развитие зародыша есть сжатое, сокращенное повторение исторического развития, иначе онтогенез повторяет в краткой форме филогенез. Идея биогенетического закона сыграла большую роль в развитии не только эмбриологии, но и эволюционного учения. Вместе с тем формулировка биогенетического закона не отражает влияние факторов окружающей среды, экологических условий, которые имеются в действительности и оказывают влияние на эмбриогенез. А. Н. Северцов, продолживший в 20-30-е годы XX столетия разработку биогенетического закона, пришел к заключению, что эволюционный процесс совершается не путем накопления изменений признаков взрослых животных, как считали Ч. Дарвин и Э. Геккель, а путем суммирования изменений, появляющихся у зародышей (теория филэмбриогенеза). Биологически важная перемена в условиях существования (среда) данного вида животных согласно воззрениям А. Н. Северцова, является стимулом к изменению его организации; характер же изменения среды, количественное и качественное соотношение между изменением среды и морфофункциональными изменениями организма определяет направление, в котором будет происходить эволюция изменяющегося вида в данную эпоху.

ОСНОВЫ СРАВНИТЕЛЬНОЙ ЭМБРИОЛОГИИ Прогенез

Половые клетки (гаметы)

Зрелые половые клетки в отличие от соматических содержат одиночный (гаплоидный) набор хромосом. Все хромосомы гаметы, за исключением одной половой, называются аутосомами. В муж-

ских половых клетках у млекопитающих содержатся половые хромосомы либо X, либо Y, в женских половых клетках - только хромосома X. Дифференцированные гаметы обладают невысоким уровнем метаболизма и неспособны к размножению.

Мужские половые клетки

Мужские половые клетки - сперматозоиды, или спермин, развиваются в очень большом количестве: выделяющаяся при эякуляции семенная жидкость содержит несколько миллионов сперматозоидов. Они невелики по размерам. У человека их размер достигает 70 мкм. Сперматозоиды обладают способностью к активному движению. Скорость их движения у человека 30- 50 мкм/с. Мужские половые клетки имеют жгутиковую форму.

Строение. В сперматозоиде различают головку и хвост (рис. 23). Головка сперматозоида (caput spermatozoidi) включает небольшое плотное ядро, окруженное тонким слоем цитоплазмы. Ядра сперматозоидов характеризуются высоким содержанием нуклеопрота-минов и нуклеогистонов. Передняя половина ядра покрыта плоским мешочком, составляющим "чехлик" сперматозоида. В нем у переднего полюса располагается акросома (от греч. acron - верхушка, soma-тело). Чехлик и акросома являются производными комплекса Гольджи. Акросома содержит набор ферментов, среди которых важное место принадлежит гиалуронидазе и про-теазам, способным растворять оболочки, покрывающие яйцеклетку. Важно отметить, что у высших позвоночных способность к оплодотворению (явление капацитации сперматозоидов) приобретается постепенно, по мере их продвижения по репродуктивному женскому тракту.

За головкой имеется кольцевидное сужение. Головка так же, как и хвостовой отдел, покрыта клеточной мембраной.

Хвостовой отдел (flagellum) сперматозоида состоит из связующих, промежуточных, главной и терминальной частей.

В связующей части (pars conjungens) или шейке (cervix) располагаются центриоли - проксимальная и дистальная, от которой начинается осевая нить (ахопета). Промежуточная часть (pars intermedia) содержит 2 центральных и 9 пар периферических микротрубочек", окруженных расположенными по спирали митохондриями (митохондриальное влагалище - vagina mitochond-rialis). Именно митохондрии обеспечивают энергией двигательную активность сперматозоидов, нарушение которой нередко связано с поражением процесса энергообразования в митохондриях. Движения хвостового жгутика бичеобразны. Они обусловлены последовательным изменением белков микротрубочек (динеин и др.). Эти белки обладают АТФ-азной активностью и расщепляют АТФ,

У многих животных между центральными и периферическими микротрубочками имеется еще 9 одиночных фибрилл.

Рис. 23. Строение мужских половых клеток.

А -- спермин в двух плоскостях; Б - ультрамикроскопическое строение спермиев; В - фрагмент главного отдела хвоста: Г -" фрагмент дистального отдела хвоста. / _ головка: // - хвост; а - связующий отдел (шейка): б-промежуточный отдел; а- главный отдел; г - дистальный отдел; / - цитолемма; 2 - акросома; - акросо-мальный пузырек; } - ядро; 4 - прокси-мальная центриоль; S - дистальная цент-риоль; и - митохондрии; 7 - осевая нить: S - циркулярные фибриллы; 9 - периферические микротрубочки: 10 - центральные микротрубочки.

вырабатываемую митохондриями. Освобождаемая при этом энергия используется для сокращения белков и обеспечения подвижности спермиев в жидкой среде. Среди факторов, влияющих на скорость движения, большое значение имеют степень зрелости спермиев, температура и рН среды.

Главная часть (pars principalis) по строению напоминает ресничку. Окружена тонкофибриллярным влагалищем (vagina tibrosa). Терминальная, или конечная, часть (pars terminalis) содержит единичные сократительные филаменты.

Сперматозоиды животных отличаются друг от друга соотношением указанных отделов и главным образом формой головки. Продолжительность жизни и оплодотворяющая способность сперматозоидов после эякуляции в определенных оптимальных условиях неодинаковы у различных животных. У млекопитающих они варьируют от нескольких часов до нескольких суток. В кислой

среде сперматозоиды быстро утрачивают способность к движению, оплодотворению и склеиваются. Способность к оплодотворению зависит также от концентрации сперматозоидов в семенной жидкости, продолжительности их пребывания в эякуляте и др.

Женские половые клетки. Классификация

Яйцеклетки, или овоциты (от лат. ovum - яйцо), созревают в неизмеримо меньшем количестве, чем сперматозоиды. Для некоторых млекопитающих количество созревающих в течение всей жизни яйцеклеток исчисляется сотнями. У других позвоночных их может быть гораздо больше (например, у рыб и амфибий). Как правило, яйцеклетки имеют шаровидную форму, больший объем цитоплазмы, чем у спермиев, они не обладают способностью самостоятельно передвигаться.

Характерным для яйцеклеток является наличие желтка (lecithos) (белково-липидных включений) в цитоплазме. В зависимости от количества желтка размеры яйцеклеток колеблются от нескольких микрометров до нескольких сантиметров (например, яйцеклетки птиц, акуловых рыб). Яйцеклетки классифицируют на безжелтковые (алецитальные), маложелтковые (олиголеци-тальные) и многожелтковые (полилецитальные). Маложелтковые яйцеклетки подразделяются на первичные (у примитивных хордовых, например ланцетника) и в торичн ы е (у млекопитающих и человека). Количество желтка в цитоплазме находится в прямой зависимости от условий развития животного (во внешней или внутренней среде) и продолжительности развития во внешней среде (рис. 24).

Как правило, в маложелтковых яйцеклетках желточные включения (гранулы, пластинки) распределены равномерно, поэтому они называются еще изолецитальными (греч. isos-равный). У большинства полилецитальных яйцеклеток желток в большей или меньшей степени сосредоточен у одного полюса (вегетативного), а орга-неллы-у противоположного (анимального). Такие яйцеклетки называются телолецитальными (греч. thelos-конец), а если желдгок находится в центре клетки - центролецитальными. Среди телолецитальных различают умеренно телолецитальные - мезо-лецитальные (например, у амфибий) и резко телолецитальные (например, у птиц).

У животных, ведущих наземное существование, организация яйцеклеток сложная. В частности, у пресмыкающихся и птиц яйцеклетки резко телолецитальны. Размеры яйцеклетки большие. Наземное развитие привело к возникновению вторичных и третичных оболочек, предохраняющих яйцеклетку от повреждающего действия механических, температурных и других факторов окружающей среды (пресмыкающиеся, птицы).

У плацентарных млекопитающих в связи с внутриутробным развитием и питанием за счет материнского организма отпала необходимость создания сколько-нибудь значительных запасов желтка

Рис. 24. Строение женских половых клеток. А - различные типы яйцеклеток: я - первично изолецитальная у ланцетника; б - умеренно телолецитальная у лягушки; в - резко телолецитальная у птицы; г - вторично изолеци-талькая у человека; 7 - ядро; 2 - цитоплазма; 3 - желточные зерна; 4 - желточные пластинки (масштаб не соблюден). Б - схема микроскопического (а) и ультрамикроскопического (б) строения яйцеклетки: 1 - ядро; 2 - цитоплазма с желточными включениями; 3 - кортикальные гранулы; 4 - цитолемма; 5 - микроворсинки цитолеммы; 6 - блестящая оболочка; 7 - фолликулярные клетки с отростками, формирующими лучистый венец.

в яйцеклетке. Поэтому вторично в эволюции появились маложелтковые яйцеклетки. Исключением являются яйцеклетки представителей примитивных млекопитающих (клоачные, отчасти сумчатые). Эти животные сохраняют многие черты своих предков - пресмыкающихся, в том числе и резко телолецитальные яйцеклетки. Яйцеклетка плацентарных млекопитающих относительно небольшая, диаметром 50-150 мкм, окружена прозрачной зоной (zona pellucida) и слоем фолликулярных клеток, принимающих участие в ее питании (см. рис. 24).

Строение. Яйцеклетка содержит ядро, цитоплазму (ооплазму), включающую в том или ином количестве питательный материал -

желток и оболочки. Все яйцеклетки имеют цитолемму (оволем-му), или первичную оболочку, а многие еще окружены вторичной (углеводно-белковой) и некоторые - третичной (скорлуповой, подскорлуповой) оболочками. Строение яйцеклеток характеризуется полярностью, которая выражена тем сильнее, чем больше желтка в клетке, например, у птиц. Та часть яйцеклетки, в которой накапливается желток, составляет вегетативный полюс, а противоположная, куда смещается ядро, - анимальный. Поверхность яйцеклетки покрыта микроворсинками.

Ядро женской половой клетки имеет гаплоидный набор хромосом. В период роста ооцита в ядре происходят интенсивные синтетические процессы амплификации генов синтеза РНК - образование многочисленных копий с тех участков хромосомной ДНК, которые кодируют рибосомную РНК. Копии ДНК замыкаются в кольца и смещаются к периферии ядра. На них возникают новые копии ДНК, которые в виде ядрышек выходят в цитоплазму, где становятся центрами усиленного синтеза рРНК и иРНК. Большая часть копий ДНК оказывается заблокированной белковыми молекулами (информосомы) до наступления оплодотворения.

Особенностью ооцитов является накопление огромных запасов химических компонентов аппарата трансляции: рибосом, иРНК, тРНК, количество которых в сотни и тысячи раз может превысить содержание их в соматических клетках. В цитоплазме яйцеклеток накапливаются также запасы разнообразных белков: гистонов, структурных белков рибосом, тубулина, липофосфопро-теидов желтка.

Среди органелл в яйцеклетках разных животных хорошо развита эндоплазматическая сеть. Количество митохондрий умеренно. Комплекс Гольджи на ранних стадиях развития яйцеклетки располагается около ядра, а в ходе созревания яйцеклетки смещается на периферию цитоплазмы. Здесь располагаются небольшие кортикальные гранулы (granula corticalia), содержащие гликозаминогли-каны. В цитоплазме яйцеклеток млекопитающих постоянно выявляются мультивезикулярные тельца. Из включений ооплазмы особого внимания заслуживает желток - питательный материал, во многом определяющий характер эмбриогенеза. Желток выявляется в виде гранул или более крупных шаров и пластинок, образованных фосфолипидами, протеинами и углеводами. Структурной единицей желтка является комплекс липовителлина (липопротеида) и фос-фовитина (фосфопротеина). Каждая пластинка состоит из более плотной центральной и более рыхлой периферической зон, снаружи ограничена осмиофильной мембраной. Плотная зона образована молекулами фосфовитина, имеет вид кристаллической решетки. Образуется желток при непосредственном участии эндоплазматиче-ской сети и комплекса Гольджи.

В процессе роста и созревания яйцеклеток в яичнике они окружаются слоем плоских или кубических клеток, называемых фолликулярными. За счет деятельности ооцита и фолликулярных клеток вокруг яйцеклетки образуется зона, богатая гликозаминогликанами.

У млекопитающих она называется прозрачной зоной (zona pellu-cida).

Фолликулярные клетки посылают через прозрачную зону длинные отростки, направленные к ооциту. В свою очередь цитолемма ооцита имеет микроворсинки, располагающиеся между отростками фолликулярных клеток (см. рис. 24, Б). Фолликулярные клетки выделяют вещества, которые поглощаются яйцеклеткой и способствуют ее росту. Фолликулярный эпителий выполняет также защитную функцию.

Эмбриогенез

Развитие зародыша происходит стадийно с постепенными качественными и количественными изменениями. Различают следующие стадии: оплодотворе ни е, дробление и образование бластулы, гаструляция и д ифференцировк а зародышевых листков с образованием зачатков тканей (г и с-т о гене з), органов (органогенез) и систем органов (с и стемогене з) плода.

Оплодотворение

Оплодотворение (fertilisatio) - слияние мужской и женской половых клеток, в результате чего восстанавливается диплоид-ный набор хромосом, характерный для данного вида животных, и возникает качественно новая клетка - зигота (оплодотворенная яйцеклетка или одноклеточный зародыш).

В зиготе масса ядра увеличивается вдвое, а объем цитоплазмы практически остается тот же, особенно при оплодотворении телоцитальных яйцеклеток. Оплодотворению предшествует о с е-менение- излияние семенной жидкости в половые пути при внутреннем оплодотворении или в среду, где находятся яйцеклетки, при наружном оплодотворении.

В процессе оплодотворения различают три фазы: 1) дистант-ное взаимодействие и сближение гамет; 2) контактное взаимодействие и активизация яйцеклетки; 3) вхождение сперматозоида в яйцо и последующее слияние - сингамия.

Первая фаза- дистантное взаимодействие - обеспечивается совокупностью ряда неспецифических факторов, повышающих вероятность столкновения половых клеток. Важную роль в этом играют химические вещества, вырабатываемые половыми клетками, - гамоны: гиногамоны (1, II), вырабатываемые яйцеклетками и андрогамоны (1, II), продуцируемые спермиями. Гиногамоны 1 (низкомолекулярные вещества небелковой природы, выделяемые яйцеклетками, активизируют движение спермиев. Гиногамоны II (фертилизины) - видоспецифические белки, вызывающие склеивание спермиев при их реакции с комплементарным андрогамоном II, встроенным в цитолему спермия. Склеивание

спермиев предохраняет яйцеклетку от проникновения многих спермиев.

Андрогамоны 1 - антагонисты гиногамонов 1 - вещества небелковой природы, подавляют подвижность спермиев.

Вторая фаза- контактное взаимодействие гамет и проникновение спермия в яйцеклетку - осуществляется с помощью акросомы и ее ферментов спермолизинов. Плазматические мембраны в месте контакта половых клеток сливаются и происходит плазмогамия - объединение цитоплазм обеих гамет.

У млекопитающих при оплодотворении в яйцеклетку проникает лишь один сперматозоид. Такое явление называют моноспер-мией. У беспозвоночных животных, рыб, хвостатых амфибий, рептилий и птиц возможна полиспермия, когда в яйцеклетку проникает несколько сперматозоидов, однако сливается с ядром яйцеклетки ядро только одного спермия. Оплодотворению способствуют тысячи других принимающих участие в осеменении сперматозоидов. Ферменты, выделяемые из акросом, - спермолизины (трипсин, гиалуронидаза), разрушают лучистый венец, расщепляют гликозаминогликаны вторичной (блестящей) оболочки яйцеклетки. Отделяющиеся фолликулярные клетки склеиваются в конгломерат, который вслед за яйцеклеткой перемещается по трубе благодаря мерцанию ресничек эпителиальных клеток слизистой оболочки.

Третья фаза. В ооплазму проникает головка и промежуточная часть хвостового отдела. После вхождения сперматозоида на периферии ооплазмы происходит уплотнение ее (кортикальная реакция) и образуется оболочка оплодотворения (рис. 25).

Как показано на беспозвоночных, механизм кортикальной реакции включает: приток ионов натрия через участок мембраны сперматозоида, встроенный в поверхность яйцеклетки после завершения акросомальной реакции. В результате отрицательный мембранный потенциал клетки становится слабоположительным. Приток ионов натрия обусловливает высвобождение ионов кальция из внутриклеточных депо и увеличение его содержания в цитоплазме яйцеклетки. Вслед за этим начинается экзоцитоз кортикальных гранул. Освобождающиеся из них протеолитические ферменты разрывают связи между блестящей оболочкой (или желточной оболочки у амфибий и птиц) и плазмолеммой яйцеклетки, а также между спермиями и прозрачной оболочкой. Кроме того, выделяется гликопротеид, связывающий воду и привлекающий ее в пространство между плазмолеммой и блестящей оболочкой. Вследствие этого формируется перивителлиновое пространство. Наконец, выделяется фактор, способствующий затвердению прозрачной оболочки и образованию из нее оболочки оплодотворения ("membrana fertilisationis).

Кортикальная реакция - один из механизмов, препятствующий проникновению в яйцеклетку других сперматозоидов. Проникновение сперматозоида через несколько минут значи-

тельно усиливает процессы внутриклеточного обмена, что связано с активизацией ферментативных систем яйцеклетки, в частности окислительно-восстановительных, а позднее - белковых синтезов.

Зигота. Ооплазматическая сегрегация. Образование мужского и женского пронуклеусов

Вслед за проникновением спермия в яйцеклетку и усилением окислительно-восстановительных реакций начинается интенсивное перемещение составных частей цитоплазмы (ооплазмы) с образованием зон повышенной концентрации желточных и пигментных гранул, органелл, что носит название о о плазмат и-ческой сегрегации. Методом маркировки установлено, что в ходе дальнейшего развития каждый участок оплодотворенной яйцеклетки даст начало определенной структуре зародыша.

Такие участки называются презумптивными (от лат. praesumptio - предположение, основанное на вероятности).

Попавшая в яйцеклетку головка спермия поворачивается на 180°, ядро постепенно набухает, округляется, хроматин разрыхляется и оно превращается в мужской пронуклеус. Центриоли, внесенные мужской половой клеткой, становятся при этом центром движения внутри оплодотворенной яйцеклетки (зиготы).

Ядро женской половой клетки, имеющее также гаплоидный набор хромосом, набухает, превращается в женский пронуклеус. Пронуклеусы сближаются. При этом в них происходит реплика-ция ДНК. В конце сближения происходит спирализация хромосом, образование метафазной пластинки из двух гаплоидных про-нуклеусов. Объединение двух пронуклеусов -синкарион (от греч. sin - связь, karyon - ядро) - приводит к восстановлению характерного для данной особи животного или человека диплоидного набора хромосом. Таким образом, зигота приобретает гены, унаследованные от обоих родителей. В реализации наследственной информации, кроме ядер, половых клеток, важная роль принадлежит цитоплазме клетки. Об этом свидетельствуют эксперименты с пересадкой ядер соматических клеток в яйцеклетку. При этом пол развивающегося организма зависит от половых хромосом. При слиянии яйцеклетки со сперматозоидом, несущим хромосому X, образуется женская особь, а при слиянии со сперматозоидом, имеющим хромосому Y, - мужская особь.

Дробление

Дробление (fissio) - последовательное митотическое деление зиготы на клетки (бластомеры) бс? последующего роста их до размеров материнской.

Вследствие фактического отсутствия интерфазы g[-периода, во время которого происходит рост клеток, образовавшиеся в результате деления клетки гораздо меньше материнской, поэтому и величина зародыша в целом в этот период независимо от составляющих его клеток не превышает величину исходной клетки - зиготы. Все это позволило назвать описываемый процесс дроблением, измельчением, а клетки, образующиеся в результате дробления, - бластомерами (от греч. blastos - зачаток, meros - часть).

На ранних стадиях все бластомеры сохраняют способность к развитию при определенных условиях в самостоятельный организм, или, как принято говорить, они тотипотентны. Дробление (уменьшение размеров бластомеров) продолжается до тех пор, пока не восстановится характерное для соматических клеток данного вида животного соотношение ядра и цитоплазмы. После этого наступает дерепрессия синтеза белка, и каждая дочерняя клетка увеличивается до размеров материнской. Дробление зародыша происходит неодинаково у различных

позвоночных, что определяется прежде всего количеством и характером распределения желтка в яйцеклетке.

Существует определенный строгий порядок появления борозд дробления. Борозды и плоскости попеременно проходят через анимальный и вегетативный полюса клетки (меридианное направление), поперечно (широтные) или параллельно поверхности (тангенциальные). Чем больше желтка в яйцеклетке у различных видов животных, тем менее полно и менее равномерно происходит дробление (рис. 26).

Первично олиголецитальные изолецитальные яйцеклетки дробятся полно и равномерно. В мезолецитальных яйцеклетках дробление полное, но неравномерное, так как в вегетативной части, где сосредоточен желток, дробление происходит медленнее, чем на анимальном полюсе, и неполно. В резко телолецитальных яйцеклетках дробление частичное - меробластическое. Например, у птиц дробится лишь часть яйцеклетки у анимального полюса". Для вторично олиголецитальных, изолецитальных яйцеклеток плацентарных млекопитающих и человека характерно полное, или г о лобластическо е, асинхронное, неравномерное дробление. Дробление происходит во время движения зиготы по яйцеводу, причем количество бластомеров нарастает в неправильном и притом у различных животных неодинаковом порядке (2, 3, 5, 10, 13, 17 и т. д.). В результате дробления образуется многоклеточный зародыш, сначала в форме плотного скопления клеток (мору ла), а затем в виде пузырька с небольшой полостью-бластоциста (бластула) (см. рис. 26).

Дробление зародышей требует соблюдения оптимальных условий среды (химический состав, осмотическое давление, температура, содержание кислорода и др.) Зародыши обладают высокой чувствительностью к химическим, физическим и другим повреждающим факторам, которые могут привести к мутациям.

Бластула ("blastula) имеет стенку - бластодерму и полость - бластоцель, заполненную жидкостью - продуктом секреции бластомеров. В бластодерме различают крышу, образовавшуюся за счет раздробившегося материала анимального полюса, дно - из материала вегетативного полюса и краевую зону, расположенную между ними.

При полном равномерном дроблении (например, ланцетника) бластула имеет однослойную бластодерму, а бластоцель находится в центре. Такая бластула называется целобластулой. В результате полного неравномерного дробления (минога, лягушка) образуется бластула с многослойной бластодермой и эксцентрично расположенным бластоцелем - амфибластула. Крыша такой бластулы, состоящая из мелких бластомеров, сравнительно тонкая,

ЭМБРИОЛОГИЯ (греческий embryon утробный плод, зародыш + logos учение) - наука о закономерностях эмбрионального развития организма. Эмбриология человека и живородящих животных изучает период внутриутробного развития организма. Эмбриология яйцекладущих - период развития до вылупления из яйца; Эмбриология амфибий - период развития, заканчивающийся метаморфозом (см.). Выделяют также эмбриологию растений. В настоящее время эмбриология человека и животных изучает не только период внутриутробного развития, но и период постнатального развития, в котором продолжаются процессы гистогенеза, органогенеза и формообразования (например, формирование половой системы).

Вместо термина «эмбриология» предлагались как бы более отвечающие содержанию науки названия «онтогенетика», «механика развития», «динамика развития», «физиология развития» и др. Однако до настоящего времени по-прежнему используется термин «эмбриология».

Предметом эмбриологии животных и человека фактически является изучение всех процессов, происходящих в организме в ходе его развития, включая периоды прогенеза, оплодотворения (см.), эмбрионального развития (см.), плодного развития (см. Плод), а также постнатальный период.

Эмбриология исследует как общие закономерности филогенеза, проявляющиеся в развитии всех многоклеточных животных (от губок и кишечнополостных до позвоночных и человека), так и особенности онтогенетического развития человека и представителей, отдельных типов, классов и видов животных. Изучение развития целостного организма осуществляется путем анализа процесса развития (как целого организма, так и его частей) на разных уровнях; при этом прослеживается формирование органов и систем, изменения тканевых, клеточных и субклеточных структур. Главным теоретическим базисом Э. является биогенетический закон (см.).

Процесс индивидуального развития человека рассматривается как исторически (филогенетически) обусловленный процесс. Определенная последовательность основных этапов эмбрионального развития повторяется у всех многоклеточных животных. Так, формирование осевого комплекса зачатков, хорды, нервной трубки, образование жаберных карманов свидетельствуют об общности происхождения человека и хордовых животных; сегментация и дифференцировка мезодермы, образование у зародыша человека первоначально хрящевого, а затем костного скелета отражают эволюционные изменения скелета в ряду позвоночных; желточный мешок, амнион, аллантоис унаследованы человеком от рептилий; образование плаценты характерно для человека и плацентарных млекопитающих; мощное развитие трофобласта и раннее обособление внезародышевой мезодермы наблюдаются у зародышей человека и человекообразных обезьян. Однако особо раннее развитие и специализация внезародышевой мезодермы, наиболее позднее замыкание переднего конца нервной трубки и ряд других особенностей эмбриогенеза наблюдаются только у человека.

Основоположниками эмбриологии считают Гиппократа и Аристотеля (4 века до нашей эры). Гиппократ и его последователи утверждали предсуществование в отцовском и материнском «семени» всех частей будущего плода (см. Преформизм), то есть процесс развития сводился лишь к количественным изменениям (рост без дифференцировки). Этому взгляду противостояло более прогрессивное учение Аристотеля о последовательном формировании органов в процессе эмбриогенеза (см. Эпигенез). В 1600- 1604 годы Фабриций дал подробное для своего времени описание развития зародыша человека и курицы. Фундаментом для выделения Э. как науки явилась работа У. Гарвея «Исследования о зарождении животных» (1651), в которой яйцо впервые рассматривалось как источник развития всех животных. При этом У. Гарвей, как и Аристотель, считал, что развитие позвоночных происходит в основном путем эпигенеза, утверждая, что ни одна часть будущего плода «не существует в яйце актуально, но все части находятся в нем потенциально». М. Мальпиги (1672), обнаруживший с помощью микроскопа органы зародыша цыпленка на ранних стадиях его развития, примкнул к преформистским представлениям, которые господствовали в науке почти до середины 18 века К. Ф. Вольф в работах «Теория зарождения» (1759) и «Об образовании кишечника у цыпленка» (1768-1769) убедительно доказал, что рост зародыша - это процесс развития. Опровергнув преформистские представления, он залложил основы эмбриологии как науки о развитии. В 1827 году К. М. Бэр открыл и описал яйцеклетки млекопитающих и человека. В своем классическом труде «Об истории развития животных» (1828-1837) он впервые проследил главные черты эмбриогенеза ряда позвоночных, уточнил введенное X. И. Цандером понятие о зародышевых листках как об основных эмбриональных органах и проследил их развитие. Он доказал, что развитие человека происходит в той же последовательности, что и развитие других позвоночных животных. Закон К. М. Бэра (см. Зародыш) о сходстве развития разных классов позвоночных имел огромное значение для прогресса эмбриологии как науки, в связи с этим он по праву считается родоначальником современной эмбриологии.

В создании эволюционной сравнительной эмбриологии, основанной на теории Ч. Дарвина, которая, в свою очередь, имела большое значение для утверждения и дальнейшего обоснования эволюционного учения (см.), исключительная роль принадлежит отечественным исследователям И. И. Мечникову и А. О. Ковалевскому. Они установили, что развитие всех типов беспозвоночных проходит через стадию обособления зародышевых листков, гомологичных зародышевым листкам позвоночных, и это свидетельствует о единстве происхождения всех типов многоклеточных животных. Большой вклад в развитие эволюционной эмбриологии внесли русские ученые А. Н. Северцов, создавший теорию филэмбриогенеза, П. Г. Светлов, разработавший теории критических периодов онтогенеза и метамерии хордовых (см. Зародыш). Конец 19 - начало 20 века ознаменовались активным развитием экспериментальных методов, большая заслуга в разработке которых принадлежит немецким ученым Э. Пфлюгеру, Ру, отечественным ученым Д. П. Филатову, М. М. Завадовскому, П. Иванову, Н. В. Насонову и др. Большой вклад в развитие науки внесли А. А. Заварзин, Н. Г. Хлопин, П. К. Анохин, Б. Л. Астауров, Г. А. Шмидт, Б. П. Токин, А. Г. Кнорре, Д. М. Голуб, А. Н. Студитский, Л. И. Фалин и др.

В зависимости от задач и методов исследования различают общую, сравнительную, экологическую и экспериментальную эмбриологии (см. Эмбриология экспериментальная).

Вначале эмбриология развивалась в основном как морфологическая наука и носила описательный характер (описательная эмбриология). Метод наблюдения и описания позволил установить, что развитие идет от простого к сложному, от общего к частному, от однородного к разнородному. На основании описательных работ, посвященных различным биологическим видам и классам, возникла сравнительная эмбриология, которая позволила выявить определенное сходство между развитием животных и человека. Впоследствии эмбриологи стали изучать не только развитие формы и структуры, но и становление функций органов и тканей. Экологическая эмбриология изучает факторы, обеспечивающие существование зародыша, то есть особенности его развития в определенных условиях окружающей среды и возможности адаптации в случае их изменения.

Современную эмбриологию характеризует комплексный морфофизиологический подход к изучению и трактовке процесса развития. Наряду с методами наблюдения и описания в наст, время широко применяются сложные методы исследования: микроскопические, микрохирургические, биохимические, иммунологические, радиологические и др. Их разнообразие обусловлено тесной связью эмбриологии с другими науками. Эмбриология неотделима от генетики (см. Генетика человека , Медицинская генетика), так как онтогенез (см.) по сути дела отражает реализацию механизма наследственности; тесно связана с цитологией (см.) и гистологией (см.), ибо целостный процесс развития организма основан на совокупности процессов размножения, миграции, дифференцировки, гибели клеток, взаимодействия между клетками. Одна из основных проблем гистологии - учение о гистогенезе - является в то же время частью эмбриологии. Эмбриология изучает процесс морфологической дифференцировки (формирование специализированных клеток) и хим. дифференцировки (хим. организация) клевок, закономерности обменных процессов в развитии организма. На основании тесной взаимосвязи с цитологией, молекулярной биологией и генетикой возникла новая комплексная отрасль биологии - биология развития. Большое значение успехи эмбриологии имели для развития анатомии (см.) и гистологии. Эмбриология, изучая изменения химического состава и обменных процессов развивающихся структур (химическая эмбриология), а также становление функций (эмбриофизиология), использует данные биохимии (см.) и физиологии (см.).

Задачами эмбриологии являются не только объяснение явлений и выявление их закономерностей, но и возможность осуществлять контроль за развитием организма. Так, знания и методы эмбриологии имеют непосредственное приложение в народном хозяйстве, в частности животноводстве, рыбоводстве, шелководстве, используются для изучения влияния окружающей среды на развитие организма, служат основой для проведения работ по интродукции, перестройке биоценозов и др. Наиболее важным для человека является применение достижений эмбриологии в медицине. Медицинская эмбриология все больше выделяется в самостоятельную науку и является одной из теоретических основ профилактической медицины. Разработка медицинских аспектов современной эмбриологии играет важную роль в решении таких проблем, как регуляция рождаемости, бесплодие, трансплантация органов и тканей, опухолевый рост, иммунные реакции организма, физиологическая и репаративная регенерация, реактивность клеток и тканей и др. Исследования в области эмбриологии имеют большое значение в раскрытии патогенеза различных пороков развития (см.). Такие важные проблемы эмбриологии, как рост и дифференцировка клеток, тесно связаны с вопросами регенерации, онкогенеза, воспаления, старения. Борьба с антенатальной и детской смертностью в большой мере зависит от решения кардинальных задач эмбриологии.

В современной эмбриологии большое значение придается исследованию процессов прогенеза, а также поиску путей управления прогенезом и эмбриогенезом, что возможно только при расшифровке механизмов, контролирующих репродуктивную функцию и обеспечивающих гомеостаз зародышей человека и млекопитающих. Эти механизмы представляют собой сложное взаимодействие генетических, эпигеномных, внутренних и внешних факторов, определяющих временную и пространственную последовательность экспрессии генов и, соответственно, цитодифференцировку и морфогенез; важную роль в процессе эмбриогенеза отводят нейроэндокринной и иммунной системам, биологически активным веществам и др. Исследование механизмов регуляции нормального и патологического эмбриогенеза на различных уровнях организации (органном, тканевом, клеточном, хромосомном) может помочь в изыскании путей управления индивидуальным развитием животных и человека, а также в разработке эффективных методов профилактики врожденных пороков развития и патологических состояний. Большое внимание уделяется исследованию системы мать - внезародышевые органы - плод. Изучаются генетические особенности плаценты человека и ее специфические изменения при наследственных заболеваниях; проводится исследование амниотической жидкости с целью диагностики заболеваний в пренатальном и постнатальном периодах. Работы по культивированию in vitro яйцеклеток и зародышей и трансплантации ранних зародышей «приемной матери» открывают перспективы восстановления детородной функции при трубном бесплодии. Эти исследования позволяют понять механизмы оплодотворения и развития в доимплантационном периоде, проанализировать патологию развития, оценить прямое действие на зародыш различных факторов, в том числе лекарственных средств, а также позволяют приблизиться к решению такой общебиологической проблемы, как цитодифференцировка. Проводятся исследования по тестированию лекарственных средств, химических веществ, загрязняющих окружающую среду, с целью выявления их возможного эмбриотоксического и тератогенного действия. Ведется поиск препаратов (витаминов, антитоксинов и др.), купирующих тератогенный эффект того или иного вещества. Исследования в области генной инженерии (см.), направленные на вмешательство в структуру и функцию генома зародышевых клеток, позволяют вызывать изменения генома (см.) зародышей млекопитающих, что в будущем даст возможность получать животных, лишенных нежелательных признаков и обладающих заданными свойствами. Благодаря разработке этих методов появится возможность создавать организмы - продуценты используемых в медицине биологических веществ, таких как гормоны человека, антисыворотки и др., а также моделировать некоторые наследственные болезни человека.

Проблемы эмбриологии в СССР разрабатываются в Институте биологии развития им. Н. К. Кольцова АН СССР, Институте эволюционной морфологии и экологии животных им. А. Н. Северцова АН СССР, Институте экспериментальной медицины АМН СССР. Институте морфологии человека АМН СССР, а также на кафедрах гистологии и эмбриологии ун-тов и мед. ин-тов Москвы, Ленинграда, Новосибирска, Симферополя, Минска, Ташкента и др.

Во многих странах функционируют научные общества анатомов, в которые входят и эмбриологи. В СССР существует Всесоюзное общество анатомов, гистологов и эмбриологов.

В нашей стране издаются журналы, отражающие проблемы эмбриологии: с 1916 года - «Архив анатомии, гистологии и эмбриологии», с 1932 года - «Успехи современной биологии», с 1970 года - «Онтогенез» и др. (подробно см. Анатомия). За рубежом выходят следующие основные журналы, посвященные проблемам эмбриологии: «Archiv fur Entwicklungsmechanik der Organismen», основанный В. Py, «Biological Bulletin», «Journal of Experimental Zoology», «Journal of Embryology and Experimental Morphology», «Developmental Biology» и др.

Начиная с 1949 года регулярно созываются международные конгрессы и конференции по эмбриологии. На XI Международном конгрессе анатомов в Мехико в 1980 году была принята новая редакция эмбриологической номенклатуры (см.), русский вариант которой подготовлен советскими морфологами.

Преподавание эмбриологии в СССР ведется на кафедрах гистологии и эмбриологии медицинских и ветеринарных институтов, на биологических факультетах университетов, на кафедрах анатомии и физиологии педагогических институтов.

Библиогр.:

История - Бляхер Л. Я. История эмбриологии в России (с середины XVIII до середины XIX века), М., 1955; Гинзбург В. В., Кнорре А. Г. и Куприянов В. В. Анатомия, гистология и эмбриология в Петербурге - Петрограде - Ленинграде, Краткий очерк, Л., 1957, библиогр.; Нидхэм Д. История эмбриологии, пер. с англ., М., 1947.

Учебники, руководства, основные труды - Бодемер У. Современная эмбриология, пер. с англ., М., 1971, библиогр.; Браше Ж. Биохимическая эмбриология, пер. с англ., М., 1961, библиогр. ; Волкова О. В. и Пекарский М. И. Эмбриогенез и возрастная гистология внутренних органов человека, М., 1976; Вязов О. Е. Иммунология эмбриогенеза, М., 1962, библиогр.; Дыбан А. П. Очерки патологической эмбриологии человека. Л., 1959; 3уссм а н М. Биология развития, пер. с англ., М., 1977; Иванов П. П. Руководство по общей и сравнительной эмбриологии, Л., 1945; Карлсон Б. Основы эмбриологии по Пэттену, пер. с англ., т. 1- 2, М., 1983; Кнорре А. Г. Краткий очерк эмбриологии человека, Л., 1959; он же, Эмбриональный гистогенез. Л., 1971; Патофизиология внутриутробного развития, под ред. Н. Л. Гармашевой, Л., 1959; Пэттен Б. М. Эмбриология человека, пер. с англ., М., 1959; Станек И. Эмбриология человека, пер. со словацк., Братислава, 1977; Токин Б. П. Общая эмбриология, М. 1977; Фалин Л. И. Эмбриология че ловека, Атлас, М., 1976; An analysis of development, ed. by В. H. Williera. о., Philadelphia - L., 1955; Are у L. B. Developmental anatomy, Philadelphia, 1965; Hamburger V. A manual of experimental embryology, Chicago, 1960; Lang-man J. Medizinische Embry ologie, Stuttgart, 1976; Nelsen О. E. Comparative embryology of the vertebrates, N. Y., 1953; Patten В. M. a. Carlson В. M. Foundations of embryology, N. Y., 1974; Pflugfelder O. Lehrbuch der Ent-wicklungsgeschichte und Entwicklungsphy-siologie der Tiere, Jena, 1962; Toivonen S. Primary embryonic Induction, L., 1962; Schumacher G.-H. Embryonale Entwicklung des Menschen, Stuttgart, 1974; Snell R. S-Clinical embryology for medical students, Boston - Toronto, 1983; ThomasJ. B. Introduction to human embryology, Philadelphia, 1968.

Периодические издания - Архив анатомии, гистологии и эмбриологии, Л.- М., с 1931 (1917-1930 - Русский архив анатомии, гистологии и эмбриологии); Acta embryologiae et morphologiae experi-mentalis. Palermo, с 1957; Archives diatomic, d*hist ologie et d"embryologie, Strasbourg, с 1922; Developmental Biology, N. Y., с 1959; Excerpta medica. Sect. 1. Anatomy, Anthropology, Embryology and Histology, Amsterdam, с 1947; Journal of Embryology and Experimental Morphology, L., с 1953.

О. В. Волкова.

  • Эмбриология (от др.-греч. ἔμβρυον - эмбрион, зародыш + -λογία от λόγος - учение) - это наука, изучающая развитие зародыша: эмбриогенез. Зародышем называют любой организм на ранних стадиях развития до рождения или вылупления, или, в случае растений, до момента прорастания. Многими учёными, в том числе отечественными, эмбриология определяется более широко, как синоним биологии развития. До середины XX века, для обозначения описываемого раздела науки, широко использовался синоним «эмбриогения»

    Эмбриология изучает следующие процессы развития живых организмов: гаметогенез, оплодотворение и образование зиготы, дробление зиготы, процессы дифференцировки тканей, процессы закладки и развития органов (органогенез), морфогенез, регенерацию.

    Интерес к вопросам эмбриологии отмечается в древнеиндийской и древнегреческой философии. Характерен он и для мыслителей древнего Китая.

    История развития Эмбриологии как науки.

    Первобытные народы задавались вопросом о факте рождения новой особи. Они заметили, что рождение новой особи является результатом полового сношения. Первые сведенья о строении зародышей птиц и млекопитающих существовали еще в древнем Вавилоне, Ассирии, Египте, Китае, Индии и Греции. С именами Гиппократа и Аристотеля (IV в. до н.э.) связаны первые представления об эмбриональном развитии организмов. В эпоху Возрождения. в 1600 и 1604 гг. Д. Фабрицкий описал и зарисовал различные стадии развития зародыша курицы, однако он неправильно считал, что развитие цыпленка происходит из завитков белка - халаз.Наблюдение над развитием зародышей позвоночных животных привели В. Гарвея (1652) к мысли, что все живое развивается из яйца. В это же время Р. де Грааф обнаружил в яичниках млекопитающих мешочки, которые он принял за яйца. Эти образования в дальнейшем вошли в науку под названием граафовых пузырьков. В период с 1676 по 1719 г. А. Левенгук открыл красные кровяные тельца, некоторых простейших животных, мужские половые клетки. Первые попытки проникнуть в сущность развития организма привели к мысли, что новый, полностью сформировавшийся организм находится в половой клетке - сперматозоиде и далее осуществляется лишь его рост. Так возникла метафизическая и идеалистическая теория преформации (prae - заранее, formatio - образование, praeformo - образую заранее), которая господствовала в науке на протяжении XVII и XVIII вв. и тормозила развитие научного познания.

    Важным в развитии эмбриологии стал 1759 г. Именно тогда была напечатана диссертация К. Ф. Вольфа «Теория Развития». К. Ф. Вольф, который вскоре стал академиком Петербургской Академии наук, в этой работе пришел к заключению, что развитие отдельных органов организма происходит путем новообразования их из неорганической массы яйца. Таким образом, он первым усомнился в истинности теории преформации и стал на позицию эпигенеза (epi - потом, после,genesis - происхождение).

    Основоположником эмбриологии является Карл Эрнст Фон Бэр, академик Петербургской Академии наук, который обосновал теорию эпигенеза (1828) и разработал учение о зародышевых листках.

Эмбриология – наука о развитии зародыша. Своими корнями она уходит в глубокую древность. Задолго до начала новой эры в Египте, Греции, Индии и Китае широко использовалось выведение цыплят в искусственных условиях. В древних источниках имеются упоминания о последах человека и животных. Тайны зарождения живых существ волновали умы учёных на протяжении тысячелетий и они пытались каким-то образом проникнуть в их глубины. Гиппократу и Аристотелю принадлежит целый ряд работ, в которых предприняты попытки объяснить скрытые от невооруженного глаза события, связанные с ранними и последующими этапами эмбрионального развития. В частности, Аристотель является создателем теории эпигенеза, согласно которой зародыш развивается из женской «материи» – крови, а мужское семя одухотворяет, то есть вносит «душу» в эту кровь.

В 1651 г. В. Гарвей в своём труде «Зарождение животных» напрочь отрицает теорию самозарождения и утверждает тезис о том, что животные развиваются только из яйца: “Живое из яйца” («Ovo ex ovo»). Он впервые предположил, что «пятно» на желтке яйца птицы «есть начало цыпленка», а кровяная в нём точка – зачаток сердца.

К середине XVIII ст. сложилось представление, получившее название преформизм, согласно которому изначально заложенные (преформированные) при сотворении жизни готовые части организма всего лишь развёртываются в пространстве. Но в 1759 г. К. Вольф в своей диссертации «Теория зарождения» вновь обосновывает теорию эпигенеза. Однако он полностью отрицал предопределённость (преформацию) и отстаивал новообразование органов из листовидных пластинок, названных позднее зародышевыми листками.

Оценивая с современных позиций теории преформизма и эпигенеза, следует указать, что на отдельных этапах эмбрионального развития имеют место как эпигенез (полипотентность клеток зародыша), так и жёсткая предопределённость, то есть преформация в развитии клеток и тканей. Прошло немало времени, прежде чем эти две теории получили право на своё совместное существование.

Лишь с изобретением микроскопа были открыты и описаны половые клетки. В 1677 году голландский натуралист А. Левенгук описал сперматозоиды, предположив при этом, что они-то и являются в мелком виде вполне сформированными зародышами (преформированы), яйцеклетка, по его мнению, всего лишь служит питательным материалом для этого зародыша. Следует заметить, что за яйцеклетку он, и долго после него, принимался третичный фолликул яичника – Граaфов пузырёк. И только в 1827 году отечественный ученый К. Бэр нашёл в зрелом фолликуле истинную яйцеклетку.

Основы современной эмбриологии заложены нашими соотечественниками К. Вольфом, Х. Пандером, К. Бэром и др. учёными. Большое значение в развитии сравнительной эмбриологии принадлежит трудам И. И.Мечникова (изучал эмбриогенез медузы) и А. О.Ковалевского (описал развитие ланцетника).

Среди отечественных эмбриологов ХХ ст., внесших большой вклад в изучение закономерностей внутриутробного развития животных и человека, следует назвать известные далеко за пределами СНГ имена А. Н.Северцова, Д. П.Филатова, П. П.Иванова П. Г.Светлова, Н. И.Зазыбина, А. Г.Кнорре, Л. И.Фалина, Г. А.Шмидта, М. Я.Субботина, Б. П.Хватова (создателя Крымской эмбриологической школы), Ю. Н.Шаповалова, В. Н.Круцяка и др.

Значение эмбриологии для ветеринарной медицины

Эмбриология сельскохозяйственных животных изучает развитие зародышей в материнском организме или яйце. Эмбриогенез является частью онтогенеза, когда происходит становление целостного организма, структурных компонентов его тканей, органов и систем. Влияние факторов внешней среды, в том числе связанных с неблагоприятными экологическими условиями, может приводить к различного рода отклонениям от нормы пренатального развития и формированию уродств, прерыванию беременности и самопроизвольным абортам.

Являясь частью биологических наук, эмбриология выясняет источники и механизмы развития тканей, метаболические и функциональные особенности системы “мать-плацента-плод”, которые дают возможность устанавливать закономерности структурных изменений в процессах гисто - и органогенезов, выявлять причины их отклонений от нормы.

Достижения современной эмбриологии позволяют получать от элитных животных в больших количествах гаметы, производить их оплодотворение in vitro, а затем выращивать полученных таким образом зародышей в утробе суррогатных матерей, что дает возможность ускоренно проводить селекцию и увеличивать стадо высокопроизводительных животных. Достижения эмбриологии широко используются в птицеводстве, рыбоводстве, пчеловодстве. Большое значение при этом приобретает генная инженерия, которая позволяет производить манипуляции на генах и изменять наследственные признаки животных в нужном направлении. В акушерстве и гинекологии важным является выяснение причин бесплодия, патологии беременности с целью её коррекции. В последние годы весьма перспективным представляется клонирование с целью размножения животных тех видов, которые обречены на вымирание, а также возможности выращивания органов и их трансплантации.

Нельзя не сказать и о том, что домашние животные являются объектом исследований в экспериментальной эмбриологии. На них проводится моделирование тех или иных патологических процессов, их коррекция с помощью фармакологических препаратов, выясняется механизм действия лекарственных средств, устанавливаются их дозы и ПДК вредных факторов производственной среды, а также выясняются эмбриотропность, тератогенность и отдаленные последствия воздействия этих факторов. Полученные таким образом данные экстраполируются на человека, что имеет чрезвычайно важное значение для гуманитарной медицины.

Таким образом, знание эмбриологии способствует формированию врачебного мышления, позволяет правильно устанавливать диагноз при нарушениях в системе “мать-плацента-плод”, выяснять причины формирования уродств и заболеваний в раннем постнатальном периоде развития, их связь с патологией беременности, правильно и своевременно проводить коррекцию таких состояний.