Деревянный подшипник скольжения своими руками. Кожаный, войлочный, велюровый самодельный подшипник. Сделать своими руками. Самостоятельно, самому. Опыт. Замок из «лепестков»

Наборный древесно-полимерный подшипник скольжения

дерева в такой установке делается вдвое плотнее, втрое прочнее, вчетверо тверже!

Есть и другой интересный вариант машины для пропитки и прессования древесины (см. рис.). Для снижения сил трения здесь по периметру входного отверстия канала установлены вращающиеся ролики, ось которых перпендикулярна действию сил трения.

Конечно, трудно представить, что «деревяшка» может заменить подшипник со стальными закаленными шариками, катящимися по точно отшлифованной беговой дорожке. Но это действительно так. Возьмем, например, конвейеры, транспортирующие руду, формовочную землю, отходы литейного производства - словом, весьма абразивные сыпучие материалы. Они смешиваются с производственной пылью, смазочным маслом, парами технологических жидкостей и образуют «пасту», опасней которой для подшипников качения, этих аристократов машиностроения, и быть ничего не может. Такая абразивная паста проникает даже через уплотнения подшипниковых узлов и словно наждаком истирает беговые канавки подшипников, а то и вовсе, став твердой и монолитной, заклинивает шарики. Не менее двух-трех раз в год приходится останавливать ленточные транспортеры и заменять ролики. А вот деревянные подшипники, как показали испытания, выдерживают здесь без замены год - полтора. Да и сам ролик, оснащенный ими, обходится на 3-4 рубля дешевле, поскольку металла в нем на несколько килограммов меньше. А роликов-то, по подсчетам машиностроителей, нужно в год 5 млн. штук - только для замены!

Еще большую выгоду дают крупногабаритные деревянные подшипники - те, в которых, например, вращаются шнеки диаметром с вагонное колесо, транспортирующие цемент на бетонных заводах. Нагрузки на подшипники столь велики, а цемент так абразивен, что металлические подшипники скольжения приходится заменять через каждые два-

три месяца, останавливая производство. А деревянные подшипники и здесь стоят более года!

Вдвое дольше металлических служат деревянные подшипники в аппаратах для изготовления искусственного волокна, хотя и «купаются» в горячих щелочах и кислотах. Модифицированная древесина с этими врагами металлов просто не реагирует.

Технология и оборудование, разработанные в Институте механики металло-полимерных систем, позволяют получать уплотненную модифицированную древесину не только для подшипникоа Втулки вспомогательных механизмов прокатных станов, фланцы, крышки, рычаги, шкивы металлорежущих станков, детали шахтных вагонеток и подъемно-транспортных машин, детали и узлы электропогрузчиков, силосоуборочных комбайнов, шпа-лоподбивочных машин и вагонов метро - вот далеко не полный список машиностроительных деталей из дерева.

В строительстве дерево тоже, казалось бы, сдавало свои позиции. Кирпич, железобетон, алюминий - что им противопоставить? Но в последнее время появились изобретения, разработки, позволяющие иначе, куда более оптимистично оценивать перспективы дерева и в этой области.

Вдумаемся, почти половину всей заготовленной древесины мы тратим на ремонт, реставрацию и замену растрескавшихся от солнца, разбухших от воды, разъеденных насекомыми и просто сгнивших деревянных конструкций и сооружений. Четверть всей заготовленной за год древесины идет на детали окон и дверей, плинтусов, трибун стадионов, садовых скамеек, дачных домиков. Мы их красим, нередко покрываем лаками, но проходит время и выбрасываем на свалку наш лес, наш труд. Иное дело древесина, обработанная по способу, предложенному московскими изобретателями. В дно ванны с расплавленным оловом вмонтирован вертикальный патрубок, через который подают сжатый воздух. Верхний срез патрубка находится чуть ниже уровня расплава, поэтому на поверхности возникает волна, которая и омывает обрабатываемые деревянные детали. Горячая волна делает поверхность древесины абсолютно гладкой, выявляет текстуру. Температура расплавленного металла почти 232°С, а древесина не обугливается, поскольку процесс идет без доступа воздуха, зато приобретает декоративные, антисептические и другие полезные свойства. Быстро проходит через волну заготовка - получается золотистой, со средней скоростью - коричневой, медленно - черной, как мореный дуб. Обычные строительные детали - плинтусы, оконные рамы, подоконники - приобретают в этой купели сумму новых ценных качеств.

В Белорусском технологическом институте разработали технологию, по которой можно всего за минуту сделать из свежеспиленного дуба - мореный! На дно стальной формы кладут лист

светлого дубового шпона, промазывают его смолой, насыпают слой березовых опилок, накрывают все это вторым листом шпона и, наконец, отполированным листом из нержавеющей стали. Форму ставят под пресс и нагревают до 200"С. При давлении в 200-250 атм березовые опилки «пускают сок». Часть сока проникает через зазоры между стенками и крышкой формы, застывая, герметизирует ее и превращает в своеобразный химический реактор, где идет гидролиз опилок, образуются сахара, выделяются уксусная, щавелевая и другие кислоты, фурфурол. В присутствии кислот образуется связующая смола, скрепляющая опилки в монолитную, прочную и твердую плиту, облицованную дубовым шпоном. Одновременно с этим процессом идет диффузия продуктов гидролиза и в дубовые облицовки, и они темнеют. Примерно через минуту из формы вытаскивают мореный дуб, не менее красивый и прочный, чем пролежавший в воде, как это положено, больше века.

А вот гигантский гиперболоид градирни - деревянного сооружения для охлаждения отработанной воды на тепловых электростанциях. Трех лет не проработал этот деревянный небоскреб, но уже потерял треть своей массы. Горячая вода вымыла из древесины смолистые и минеральные вещества. Еще год-два, и придется остановить градирню на ремонт, потратить сотни кубометров первосортного леса... Или - сорокамет-

Конструкция установки для уплотнения и модификации древесины в ультразвуковом поле: 1 - кожух, 2 - заготовка в зоне контурного уплотнения, 3 - магни-тострикционные пластины, 4 - резиновые прокладки, 5 - волновод, 6 - зона пропитки.

Книга название: Неметаллические подшипники скольжения
Издание: Москва, \"Машиностроение\"

Год печати: 1949
Кол-во страниц: 119
Формат: Djvu

Неметаллические подшипники известны с давних времен. Деревянные подшипники, смазываемые водой и другими смазочным\" материалами, применялись в течение многих столетий. С развитием металлургии и машиностроения требования к прочности, форме, размерам деталей машин возросли. В большинстве случаев деревянные подшипники заменялись металлическими. Однако в некоторых механизмах, например, в прокатных станах, пароходных двигателях и других машинах, в которых желательно или неизбежно было использование в качестве смазки воды, твердые породы дерева (бакаут и др.) успешно конкурировали с металлами. С начала тридцатых годов нашего столетия стали применять подшипники, изготовленные из искусственных смол в соединении с различными органическими и неорганическими материалами, т. е. из так называемых пластических масс, или пластиков, которые в определенной стадии изготовления обладают пластическими свойствами. Этими свойствами обладают также металлы. Однако подшипниковые пластики могут быть в пластичном состояний только один раз, и после отвердевания вернуть их в это состояние невозможно. Металлы же способны к многократному пластичному состоянию. Таким образом, термин \"пластмасса\", или \"пластик\", не отражает в полной мере отличительные черты этого материала. Однако он использован в настоящей книге ввиду отсутствия другого принятого термина.

Древесные пластики впервые стали применяться в качестве-подшипникового материала в Советском Союзе. Советские ниже-1 неры Матвеев и Галай еще задолго до войны неопровержимо доказали на опыте эксплуатации подшипников из этого материала-в разных машинах техническую и экономическую целесообразность их применения. Подшипники из пластмасс отличаются упругими и противоза-дирными свойствами, присущими лучшим породам твердого дерева, и подобно металлам обладают высокой прочностью, плотностью и хорошей обрабатываемостью, позволяющей получатк гладкие поверхности трения. Преимущество подшипников из пластических масс заключается в том, что они отлично работают в условиях высоких нагрузок при смазывании водой. Вода может служить смазкой и для подшипников из других материалов, если условия работы подшипника допускают образование жидкостной пленки. Однако вязкость воды настолько мала по сравнению с вязкостью смазочных масел, что в большинстве случаев при трении металла о металл жидкостная пленка при смазывании водой не образуется и происходит граничное трение. При этом работа подшипника зависит в основном от качества поверхностей трения. Применение водяной смазки для стали и бронзы или для другой пары металлов при повышенных нагрузках ведет к заеданию и разрушению поверхностей трения.

Перечисленные свойства способствовали широкому использованию пластиков для изготовления подшипников скольжения в различных областях машиностроения (прокатные станы и пр.). При определенных условиях подшипники из пластмасс служат е 6 раз дольше подшипников из твердых пород дерева (бакаут) и в 10 раз дольше бронзовых и потребляют при этом значительно меньше мощности, благодаря резкому уменьшению коэфициента трения. Успешный опыт применения неметаллических подшипников в прокатных станах, гидравлических турбинах, гидротехническом оборудовании дает основание предполагать, что они после проведения соответствующих научно-исследовательских работ найдут применение и в других областях машиностроения, например, в краностроении, дорожном, строительном, сельскохозяйственном, транспортном, текстильном, химическом, пищевом машиностроении, а также в станкостроении.

Наряду с существенными преимуществами технического порядка внедрение подшипников из пластических масс дает ряд экономических выгод и в первую очередь экономию энергии, увеличение производительности и сокращение простоев оборудования, снижение стоимости ремонта, экономию цветных металлов и минеральных смазочных материалов. Необходимо, однако, подчеркнуть, что ряд вопросов, связанных с применением неметаллических подшипников, требует дальнейшего всестороннего изучения. Теоретические исследования вопросов трения в подшипниках из oпластмасс пока еще не дали законченных, пригодных для практического применения расчетных данных. Нет еще ясного предста-вления о явлениях, происходящих на поверхности трения подшипников из пластмасс вследствие взаимодействия смазкн, протекающей через подшипник, и смазки, поглощенной пластмассой, и это создает особые трудности при анализе. Для выяснения явлений, связанных с работой неметаллических подшипников и эффективного использования преимуществ в различных областях машиностроения и приборостроения необходимо провести ряд экспериментальных исследований.

В зависимости от рода трения в подшипнике различают подшипники скольжения , в которых опорная поверхность оси или вала скользит по рабочей поверхности подшипника, и подшипники качения , в которых развивается трение качения благодаря установке шариков или роликов между опорными поверхностями оси или вала и подшипника.

Подшипники качения по сравнению с подшипниками скольжения обладают рядом достоинств.

  • В современном машиностроении подшипники скольжения ограничены лишь некоторыми областями, например, для быстроходных валов , в режиме работы которых долговечность подшипников качения очень мала;
  • для осей и валов, требующих точной установки;
  • для валов очень большого диаметра, для которых не изготовляют стандартных подшипников качения;
  • когда подшипники по условиям сборки должны быть разъемными (например, для коленчатого вала);
  • когда в связи с восприятием подшипником ударных и вибрационных нагрузок используется демпфирующее действие масляного слоя подшипника скольжения;
  • при работе подшипников в воде, агрессивной среде и т. п.,
  • когда подшипники качения неработоспособны;
  • для тихоходных осей и валов неответственных механизмов, когда подшипники скольжения оказываются проще по конструкции и дешевле подшипников качения
  • .

В зависимости от направления воспринимаемой нагрузки подшипники скольжения различают:

  • радиальные для восприятия радиальных, т. е. перпендикулярных осям и валам, нагрузок;
  • упорные , или подпятники , для восприятия нагрузок, расположенных вдоль осевых линий осей и валов;
  • радиально-упорные для восприятия одновременно радиальных и осевых нагрузок.

При одновременном действии на ось или вал радиальных и осевых нагрузок обычно применяют сочетание радиальных и упорных подшипников и значительно реже пользуются радиально упорными подшипниками скольжения. Основные требования к подшипникам скольжения:

  • конструкции и материалы подшипников должны обеспечивать минимальные потери на трение и износ валов, иметь достаточную прочность и жесткость, чтобы противостоять действующим на них силам и вызываемым ими деформациям и сотрясениям;
  • размеры трущихся поверхностей должны быть достаточными для восприятия действующего на них давления без выдавливания смазки и для отвода развивающейся от трения теплоты;
  • сборка подшипников, установка осей и валов и обслуживание (особенно смазка на ходу) должны быть по возможности простыми.

Для уменьшения трения в подшипниках, повышения к. п. д., снижения износа и нагрева до минимума трущиеся поверхности смазывают маслом или другим смазочным материалом. В зависимости от толщины масляного слоя подшипник работает в режиме жидкостного , полужидкостного или полусухого трения .

При жидкостном трении рабочие поверхности вала и подшипника полностью разделяет слой смазки, толщина которого больше сумм неровностей обработки поверхностей вала и подшипника. При полусухом трении между валом и подшипником преобладает сухое трение, а при полужидкостном - жидкостное трение. Различают также граничное трение , при котором сплошной слой масла настолько тонок, что он теряет свойства вязкой жидкости.


Рис. 1

Самый благоприятный режим работы подшипника скольжения - при жидкостном трении, которое обеспечивает износостойкость, сопротивление заеданию вала и высокий к. п. д. подшипника. Для создания этого трения в масляном слое должно быть гидродинамическое (создаваемое вращением вала) или гидростатическое (от насоса) избыточное давление. Для получения жидкостного трения обычно применяют подшипники с гидродинамической смазкой, сущность которой в следующем. Вал при вращении под действием внешних сил занимает в подшипнике эксцентричное положение (рис. 1, а) и увлекает масло в зазор между ним и подшипником. В образовавшемся масляном клине создается гидродинамическое давление, обеспечивающее в подшипнике жидкостное трение. Эпюра распределения гидродинамического давления в подшипнике по окружности показана на (рис. 1, а), по длине - на рис. (1, б). Так как конструкция подшипников с гидростатическим давлением сложнее конструкции подшипников с гидродинамическим давлением, то их применяют преимущественно для тяжелых тихоходных валов и других деталей и узлов машин (например, тяжёлых шаровых мельниц, больших телескопов и т. п.).


Рис. 2

Подшипник скольжения состоит из корпуса и помещенных в нем вкладышей (рис. 2, а; 3), на которые непосредственно опирается ось или вал. корпус обычно делают из чугуна, вкладыши для уменьшения трения изготовляют из материалов, которые в паре с цапфой вала имеют незначительный коэффициент трения. Замена вкладышей при износе стоит значительно дешевле, чем замена всего подшипника. В ручных приводах, где износ подшипников незначительный, применяют и безвкладышные подшипники скольжения (рис. 2, б). Подшипник скольжения изготовляют либо в отдельном корпусе (рис. 2; 3), прикрепляемом болтами к детали, на которой он устанавливается, либо в корпусе, выполненном как одно целое с деталью, например станиной машины, корпусом редуктора и т. п. Наружная форма корпуса подшипника определяется в зависимости от того, где устанавливается подшипник (рис. 2; 3).


Рис. 3

Различают неразъемные (рис. 2) и разъемные (рис. 3) подшипники скольжения. Корпус и вкладыши неразъемного подшипника цельные. Вкладыш изготовляют в виде втулки (рис. 4, а), которую запрессовывают в корпус подшипника. Корпус разъемного подшипника состоит из двух частей (рис. 3): основания 1 , воспринимающего нагрузку со стороны оси или вала, и крышки 2 , прикрепляемой к основанию корпуса болтами или шпильками. Вкладышей в разъемном подшипнике обычно два - верхний 3 и нижний 4 . Иногда применяют многовкладышевые разъемные подшипники .


Рис. 4

Конструкция неразъемных подшипников проще и дешевле разъемных, но они неудобны при монтаже осей и валов. Поэтому эти подшипники обычно применяют для концевых цапф осей и валов небольших диаметров. Разъемные подшипники удобны при монтаже осей и валов и допускают регулировку зазоров путем сближения крышки и основания, поэтому их применяют наиболее широко. Для правильной работы подшипника скольжения разъем его корпуса рекомендуется выполнять перпендикулярно направлению нагрузки, воспринимаемой подшипником. Для предупреждения боковых смещений крышки относительно основания корпуса плоскость разъема корпуса обычно делают ступенчатой (см. рис. 3) или предусматривают центрирующие штифты.

В случае большой деформации вала или невозможности осуществления точного монтажа применяют самоустанавливающиеся подшипники скольжения , вкладыши которых обычно выполняют со сферическими опорными поверхностями (рис. 4, а), а иногда с опорными поверхностями в виде узкого пояса с малой угловой жесткостью (рис. 4, б). В подшипниках скольжения быстроходных малонагруженных валов, а также в подшипниках большой несущей способности для предупреждения вибрации валов при работе в режиме жидкостного трения применяют самоустанавливающиеся сегментные вкладыши (рис. 4, в), которые благодаря образованию нескольких масляных клиньев обеспечивают устойчивую работу подшипников и высокую несущую способность. В подпятнике скольжения (рис. 6, а) кольцевая пята опирается на опорное кольцо, которое для самоустановки в случае перекоса вала сопрягается с корпусом подпятника по сферической поверхности и предохраняется от вращения штифтами. Для создания в подпятниках масляных клиньев, обеспечивающих жидкостное трение, на рабочей поверхности кольца делают радиальные канавки (рис. 5, а) и на выделенных между ними сегментах - скосы в окружном направлении (рис. 5, б). Канавки служат для растекания масла, а скосы сегментов - для попадания масла на рабочие поверхности пяты и подпятника. При постоянном вращении вала скосы делают односторонними (см. рис. 5, б), при реверсивном двусторонними. Для увеличения несущей способности и надежности работы подпятников применяют подпятники скольжения с самоустанавливающимися сегментами (рис. 5, в), в которых образование масляных клиньев происходит во время работы автоматически.


Рис. 5
Рис. 6

Корпуса подшипников обычно выполняют из чугуна СЧ15, СЧ18 и СЧ20. Вкладыши подшипников скольжения изготовляют из бронз, чугунов, пластмасс и других материалов. Широко применяют чугунные или бронзовые вкладыши с баббитовой заливкой.

Вкладыши из легких антифрикционных материалов - баббитов и свинцовых бронз - изготовляют биметаллическими; в этих вкладышах тонкий антифрикционный слой наплавляют на стальную, чугунную (см. рис 4, а, б) или бронзовую (в ответственных случаях) основу. Биметаллические вкладыши из свинцовых бронз штампуют из стальной ленты, на которую наносят бронзу. Бронзовые вкладыши из оловянных, алюминиевых, кремнистых и т. п. бронз выполняют обычно сплошными однородными (см. рис. 2; 3). Бронзовые вкладыши обладают высокими прочностью и жесткостью, хорошо работают при ударах, но сравнительно медленно прирабатываются.

Вкладыши с баббитовой заливкой хорошо прирабатываются, стойки против заедания, юное цапф при них минимальный. Эти вкладыши особенно хорошо зарекомендовали себя при больших скоростях и постоянном вращении осей и валов в одну сторону. При работе с ударами и реверсивном вращении оси или вала рекомендуют бронзовые вкладыши. При длительных перерывах в работе и малой окружной скорости оси или вала применяют вкладыши из антифрикционных чугунов, которые значительно дешевле бронзовых, или вкладыши с баббитовой заливкой.

В некоторых подшипниках скольжения применяют металлокерамические вкладыши из порошков железа или бронзы с добавлением графита и других примесей путем прессования под высоким давлением и последующего спекания при высокой температуре. Достоинство металлокерамических вкладышей - высокая пористость их материалов (объем пор составляет 15...40% объема вкладыша), благодаря чему они пропитываются маслом и могут в течение продолжительного времени работать без смазки. Пластмассовые вкладыши подшипников скольжения изготовляют из древеснослоистых пластиков (ДСП), текстолита, текстоволокнита, полиамидов (в отечественной практике применяют капрон, нейлон, смолы 68 и АК-7) и фторопластов (тефлона). Основные достоинства пластмассовых вкладышей - отсутствие заедания вала, хорошая прирабатываемость, возможность смазки водой или другой жидкостью. Наиболее распространены вкладыши из текстолита и ДСП, которые широко применяют в прокатных станах, шаровых мельницах, гидравлических и других машинах с тяжелым режимом работы. Вкладыши из текстолита и ДСП изготовляют наборными из отдельных элементов, которые устанавливают в металлических кассетах (рис. 7, а). Текстоволокнитовые, а иногда и текстолитовые вкладыши изготовляют цельнопрессованными. Нейлоновые, капроновые и тефлоновые вкладыши выполняют на металлической основе, на которую наносят тонкий слой нейлона, капрона или тефлона. Эти вкладыши (в особенности тефлоновые) в паре со стальной цапфой имеют очень низкий коэффициент трения и могут работать без смазки.


Рис. 7

В некоторых подшипниках применяют вкладыши из дерева (бакаута, самшита и других твердых пород), резины и некоторых других материалов.

Конструкция деревянных вкладышей такая же, как и вкладышей из ДСП, и они имеют те же области применения.

Резиновые вкладыши применяют главным образом в подшипниках, работающих в воде, например в подшипниках роторов гидротурбин. Достоинства резиновых вкладышей - высокая податливость, компенсирующая неточность изготовления; пониженная чувствительность к попаданию на рабочую поверхность вкладыша твердых частиц; возможность смазки водой. В резиновых вкладышах слой резины помещают внутри стальной втулки (рис. 6, б) и снабжают продольными канавками для усиления охлаждения подшипника и удаления из него абразивных частиц.

Для некоторых простейших подшипников скольжения корпуса, втулки и вкладыши нормализованы ГОСТ 11521-82, 11525-82 и 11607-82...11610-82. Ненормализованные подшипники скольжения изготовляют по ведомственным нормалям.

Деревянный подшипник.

Середина апреля. Снегу еще полно, хоть и тепло. Весна. Мою бригаду совместно с нуповцами с утра отправили очищать НУПы от снега.
НУП это необслуживаемый усилительный пункт, который является объектом, сооружением связи. Под землей зарыт круглый контейнер, довольно внушительных размеров, который пичкают разной усилительной аппаратурой. Так как речь идет о семидесятых годах, естественно аппаратура аналоговая, которая имеет довольно внушительные габариты по сравнению с современными средствами связи подобного рода. Опустим дальнейшие технические
Подробности, главное, что он был глубоко зарыт в землю, а первый уровень к тому же еще обволакивался грунтом. Получалось нечто конусообразной пирамиды.
Так вот, зимой все это сооружение засыпало снегом, и весной талые воды могли просочиться сквозь оболочку НУПа и замочить, нет, не оборудование, до него воде трудно добраться, а подступы к этому оборудованию, да и вызвать дополнительную сырость, влажность, а эти факторы любая техника не любит. Вот и послали нас в помощь нуповцам снег отгрести подальше, хотя бы конуса очистить.
Выехали на трассу в нашем маленьком автобусе кабельного участка на базе ГАЗ-51.
Спешили, как ни как, надо было пять НУП очистить. Спеши не спеши, но на пятом задержались. Он стоял в открытом поле, и его особенно занесло снегом. Закончили, почти в шесть часов. Ну, ничего, обратно ехать по прямой асфальтовой дороге Кунгур Пермь. Хоть и восемьдесят километров, долетим быстро, с нашим водилой, Колей Шалямовым, это раз плюнуть.
Стемнело быстро, мотор газона ровно гудел. В салоне было хоть и не жарко, но тепло. Коля умудрился выхлопную трубу пропустить через салон по полу, так что теплело с каждым километром, да и валенки можно было подсушить.
Линга дремал, Леха из Ростова, Барашков и нуповцы Миша с Гришей травили анекдоты. Вова Чех мой одногрупник, с которым вместе распределились и я сидели молча, наблюдая за дорогой.
Вдруг на шум двигателя автобуса наложился какой-то посторонний звук. Сначала периодическое постукивание, потом все громче и громче резкие удары. По полу автобуса пробежала вибрация, потом что-то так застучало, что Коле Шалямову пришлось резко затормозить машину.
-Мать, перемать,- водитель выскочил в темноту. Громко ругаясь, полез под автобус.
Мы притихли, Линга проснулся.
- Ну, что там, Никола?
- Кажется приехали,- залезая обратно в салон, произнес Николай.- Опорный подшипник полетел.
- Справа или слева, который?
- Да посередине, в месте соединения двух карданов, напрочь расхлестало.
- Ну и что делать? – заволновались мы.
- Куковать!- наступила тишина.
Достав из бардачка фонарик, Никола опять выпрыгнул в тьму, залез под автобус. Его не было минуты две. Забравшись в автобус он, потирая замершие руки, сел в водительское кресло, завел двигатель.
- Есть идея, должно получиться, только надо с дороги убраться. Здесь не сподручно, да мешаться будем.
Он медленно проехал метров двадцать в перед и свернул на дорожку, ведущую в лес. Остановился. Потом пошурудив в ящике под задним сиденьем, достал топор, пилу, несколько ключей. И обращаясь к Володе, резко сказал.
- Чех, пошли со мной, а вы давайте ка костер. Пока разожгите, не помешает.
- Капитан судна сказал на Абордаж, значит на Абордаж, - философски заметил Барашков,- пошли мужики, костерок разведем, и в правду, не помешает.
Все зашевелились, вышли из автобуса, кроме Линга он сделал вид, что опять уснул.
- Володя, вон ту березу сруби, - попросил Шалямов,- а я пока гнездо от подшипника освобожу.
Григорий, который совмещал должность электромеханика НУП с должностью водителя, выделенного его бригаде бортового уазика, стал поддомкрачивать машину. Николай с ключами залез под автобус.
Минут через десять уже весело потрескивал костер. Послышался шум упавшего дерева, это Вова Чех свалил-таки березу.
- Миха, помоги Чеху, - вылез из под автобуса Николай,- отпилите с ним метра полтора от комля бревешку и принесите сюда.
Что задумал Николай никто не знал. Мне подумалось тогда, что будь на месте Михи сейчас сам начальник ТУСМА Коржак, и он бы беспрекословно пошел и сделал бы то, что приказал сделать простой водитель автобуса. Видимо, когда твоя судьба или жизнь зависят от человека, который знает что надо делать, надо прислушиваться и подчиняться, если он действительно знает, что надо делать.
Вскоре Миха приволок на себе часть отпиленной березы, следом шел Володя с пилой.
- Никола, хватит такой бревешки, - крикнул под автобус Миха Якин.
- Хватит. За глаза. Подождите немного, сейчас закончу.- Прокричал в ответ Николай.
И, действительно, через минуту вылез из под автобуса, держа в руках, довольно солидный, но развалившийся подшипник. Внутренний обод подшипника треснул и вылетел, внешний остался.
Подойдя к отпиленному березовому бревну, присел, и стал что-то вымерять, прикидывать. Потом грязным масляным пальцем чиркнул в двух местах по белой коре березы, приказал:
- Пилите здесь, только по ровнее.
Через минуту на ладонь к нему лег березовый блин, толщиной сантиметров восемь, а в диаметре чуть больше демонтированного подшипника.
Николай положил подшипник на березовый кругляш и отверткой прочертил внешний диаметр. Потом топором аккуратно стесал лишнее дерево. Получилась вполне ровная, узкая болванка. Потов резким взмахом топора он разрубил деревянный блин на две части. Одну половинку взял себе, вторую подал Володе.
- Чех, говорят ты всегда с большим, башкирским ножом ходишь. Вот и вырежи в этой половике серединку, примерно вот такого диаметра.
Все с интересом наблюдали за работой двух человек. Береза сама по себе твердое дерево, а тут еще и на морозе, но против острых ножей, не устоять. И, минут через десять, после сопения и почти беззвучных матерков, работа была сделана. Коля соединил две половинки, и перед нашим взором предстал, деревянный подшипник, пусть грубоватый, пусть не идеально ровный, но подшипник.
Перекурив, Коля густо намазал солидолом внутри новоявленного подшипника и полез опять под автобус.
Сборка заняла меньше времени, так что через двадцать минут мы сидели уже в автобусе.
- Ну что, Никола, поедет автобус?
- А куда он нафиг денется. Поедет. Только вон тот чурбачок на всякий случай закинь ка в салон.
Автобус тронулся с места. Задним ходом выехали на дорогу и поехали вперед.
Сначала тихонько, ничего не бренчало. Потом побыстрее, потом еще быстрее. Смотрим, на спидометре уже и пятьдесят километров.
Так до кабельного участка и доехали на деревянном подшипнике.
Кто бы мог подумать, что в двадцатом веке, в эпоху развитого социализма, в России, автобусы могут ездить на деревянных подшипниках. Но я испытывал гордость за наших людей, которые, казалось бы, в безвыходной ситуации, нашли выход. Смех и грех, но автобус на этом деревянном подшипнике проехал еще более двухсот километров, пока, наконец, то его заменили на стальной подшипник.

Рецензии

Название заинтересовало, поскольку я технарь, станкостроитель. Рассказ интересный и надо сказать – бригаде повезло, что у них оказался такой изобретательный водитель. Конечно изобретательных людей у нас немало, но в нужном месте, в нужное время – большое везение.
А вообще-то, дерево испокон веков служило человеку, чего только из него не делали, пока металл был дорог и редок. А в годы революционной разрухи случалось, что и вместо рельсов дереву приходилось служить.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи.

Еще статьи

Зажигание, поддержание сварочной дуги при сварке. Обработка сварных шв...
Начало шва. Зажигание сварочной дуги. Сварка своими руками....

Дуговая сварка своими руками. Электросварка. Самоучитель. Сварной шов....
Как научиться сварочным работам самостоятельно....

Почему крошится, трескается, разрушается бетон в фундаменте, дорожке, ...
Залили летом дорожку и фундамент. После зимы видны серьезные разрушения, наблюда...

Клеим крепко, прочно, правильно. Выбираем, подбираем хороший, лучший, ...
Научимся правильно выбирать клей и клеить. Лучший клей - подходящий и правильно...

Садовая скамейка своими руками на дачном участке...
Конструкция садовой скамейки. Как сделать своими руками удобную лавочку на даче...

Покрасить снаружи дом, забор, ворота. Защита древесины. Краска наружна...
Опыт покраски наружных деревянных конструкций, таких, как забор, ворота, деревян...

Закрыть стык ванны + стены, плитки, кафеля. Клеим, наклеим, приклеим б...
Как надежно и долговечно закрыть стык ванны и стены? Если стена из панелей, плит...

Спутниковое телевидение, нтв плюс, триколор тв. Установка, подключение...
Как самому установить оборудование для спутникового телевидения...