Набивочные, уплотнительные и прокладочные материалы. Огнеупорные и теплоизоляционные, прокладочные и набивочные материалы Прокладочные материалы в машиностроении

Арендный блок

Прокладочные материалы служат для уплотнения фланцевых соединений трубопроводов, арматуры, аппаратов и другого оборудования.

Материал прокладки должен обладать эластичностью. При стягивании фланцев прокладка деформируется и, заполняя мельчайшие неровности поверхностей фланцев, обеспечивает герметичность соединения.

Прокладка должна быть достаточно прочной, чтобы выдерживать давление среды, стремящейся вырвать ее из пространства между фланцами, и достаточно упругой, чтобы сохранять герметичность соединения при температурных деформациях.

Кроме того, от материала прокладки требуется стойкость к действию агрессивных сред и способность сохранять прочность в определенных температурных режимах.

Наиболее часто используют следующие прокладочные материалы.

Картон прокладочный выпускают двух марок: А — пропитанный, Б — непропитанный. Картон листовой, пропитанный в горячей олифе, применяют во фланцевых соединениях при перекачке нефтепродуктов, воды и многих других нейтральных сред. Предельное допускаемое давление транспортируемой среды 1 МПа, предельная температура 40°С.

Асбестовый картон используют в горячих (до 300°С) газовых, а после соответствующей пропитки жидкостных и паровых средах при давлении до 2,0 МПа. Листовой асбест, покрытый жидким стеклом, олифой или натертый графитом, служит для изготовления прокладок, устанавливаемых на трубопроводах для серной, соляной, азотной кислот и других агрессивных сред. Асбестовые шнуры используют для уплотнения неподвижных деталей машин и аппаратов: ШАМ (шнур асбестовый магнезиальный) выдерживает температуру до 425°С, ШАПТ (шнур асбестовый повышенной теплостойкости) —температуру до 300°С.

Паронит листовой широко применяют в качестве прокладочного материала на трубопроводах горячей воды, конденсата, пара при температуре до 300°С, а также спирта, серной кислоты, сжатого воздуха при температуре до 100°С и во многих других случаях. Некоторые сорта паронита устойчивы к действию нефтепродуктов.

Паронит листовой общего назначения (марка ПОН) служит для уплотнения плоских разъемов неподвижных соединений компрессоров с давлением рабочей среды не более 4,0 МПа.

Пластикат хлорвиниловой листовой применяют в кислых и щелочных средах при температуре не выше 80°С и низких давлениях.

Полиизобутилен листовой марки ПСГ отличается очень высокой стойкостью к действию большинства химически активных сред, в том числе кислот — азотной (концентрацией до 32%), серной, соляной, муравьиной, уксусной (до 50%), растворов едкого натра (до 50%) и т. д. Однако полиизобутилен неустойчив к маслам, бензину и некоторым другим органическим жидкостям.

Резину техническую (листовую) используют для уплотнения фланцевых соединений при работе на паре, воде, слабых щелочах, кислотах, нейтральных жидкостях и газах при температуре до 100°С.

Полиэтилен стоек против действия 40%-ной азотной кислоты, горячей концентрированной соляной кислоты, 60%-ной серной кислоты. Особенно устойчив к плавиковой кислоте, нерастворим в этиловом спирте, ацетоне, бензоле, четыреххлористом углероде. Поэтому полиэтилен применяют в качестве прокладок для фланцевых соединений при транспортировке указанных продуктов. Кроме того, полиэтилен используют для покрытия резиновых и асбестовых прокладок для повышения их химической стойкости.

В настоящее время фторопласт-4 широко применяют для прокладочного материала во многих отраслях промышленности. Фторопласт обладает высокой теплостойкостью, сохраняя свои свойства при температуре от —100 до +300°С, на него не действуют кипящие щелочи, окислители, кислоты, хлор, бром и йод. Он практически не растворим и не набухает ни в одном известном растворителе.

Лента прокладочная из фторопласта-4 предназначена для изготовления прокладочного и изоляционного материала, стойкого к сильным агрессивным средам, работающего при температурах от —60 до +250° С.

Фторопластовый уплотнительный материал (ФУМ) используют в качестве химически стойкого самоомазывающего набивочного и прокладочного материала, работающего при температурах от —60 до +150°С и давлении среды до 6,5 МПа.

Фторопласт-4 часто применяют как покрытие для прокладок из других материалов (обычно асбеста) в тех случаях, когда по трубопроводу транспортируют высокоактивные среды при температурах до 250°С.

Красная отожженная медь (листы и проволока) и мягкая сталь служат для уплотнения фланцевых соединений трубопроводов, аппаратов и машин, работающих при высоких давлениях и температурах до 350°С.

Алюминий используют для изготовления прокладок в газовых средах при высоком давлении (водород, азотоводородная смесь, водяной газ и др.).

Стальные линзовые прокладки применяют на трубопроводах высокого и сверхвысокого давления (до 200 МПа) при температуре до 1000°С.

Для изготовления асбометаллических прокладок используют листовую медь, алюминий и асбест. Прокладки обладают прочностью и термостойкостью, применяют на трубопроводах при транспортировке воды, пара, кислот и щелочей при высоких давлениях и температурах.

Набивочные материалы обеспечивают герметичность сальниковых уплотнений в различном оборудовании и арматуре.

Хлопчатобумажная сухая набивка служит для уплотнения сальников и арматуры в водяных насосах и на водопроводах.

Пеньковую просаленную набивку и шнуры применяют для арматуры и водяных насосов при давлении до 15,0 МПа и температуре не выше 50°С.

Сухой асбестовый шнур используют в газовых средах при высоких температурах, асбестовый просаленный и прографиченный шнур — для водо-, газо- и паропроводов при температуре до 300°С и давлении 2,5 МПа. Асбестовый шнур, пропитанный специальными веществами (парафин, графит, технический вазелин и Др.). применяют для уплотнения сальников кислотных насосов. Графитовые прессованные кольца употребляют в газодув-ках и паровых турбинах.

Свинец, баббит, бронзу, медь, сталь и другие металлы и сплавы применяют для сальниковых набивок в насосах и компрессорах высокого давления.

Прорезиненные шнуры используют в различных машинах, работающих при средних давлениях и температуре 100°С. Шнуры из асбометаллической ткани могут применяться при температуре до 400ЧС.

В последнее время большое распространение получили уплотнительные кольца из пластмасс и стеклопластиков.

У нас самая большая информационная база в рунете, поэтому Вы всегда можете найти походите запросы

Эта тема принадлежит разделу:

Гидравлика. Термодинамика

Гидравлика — одно из направлений единой науки механики жидкости, называемой технической гидромеханикой, изучающей вопросы равновесия и движения различных жидкостей. Законы гидравлики широко используют во многих областях техники.

К данному материалу относятся разделы:

Свойства жидкостей

Сведения из гидростатики и гидродинамики

Практическое использование законов гидростатики и гидродинамики

Истечение жидкости через отверстия и насадки

Параметры состояния газа

Идеальный и реальный газы

Теплоемкость газов

Первый закон термодинамики

Термодинамические процессы

Второй закон термодинамики

Свойства водяного пара

Свойства влажного воздуха

Истечение и дросселирование

Основы теплопередачи

Основные сборочные единицы трубопроводов

Принцип действия и устройство трубопроводной арматуры

Ремонт и испытание трубопроводов и арматуры

Правила безопасной эксплуатации трубопроводов и арматуры

Составление и чтение схем трубопроводов

Объемные насосы. Общие сведения

Возвратно-поступательные насосы

Основные сборочные единицы насоса

Процессы всасывания и нагнетания

Газовые колпаки

Индикаторная диаграмма поршневого насоса

Дозировочные и синхродозировочные электронасосные агрегаты

Паровые прямодействующие насосы

Примеры составления и чтения схем насосных установок

Динамические насосы. Общие сведения

Схема установки центробежных насосов

Основные параметры центробежного насоса

Уравнение Эйлера для определения теоретического и действительного напоров центробежного насоса

Характеристики центробежного насоса и трубопровода

Совместная работа центробежных насосов

Осевая сила и способы ее разгрузки

Основные сборочные единицы центробежных насосов

Горизонтальные одноколесные и многоступенчатые центробежные насосы

Центробежные консольные и погружные химические насосы

Центробежные герметичные электронасосы. Насосы из неметаллических материалов

Типовые схемы насосных установок

Общие положения по эксплуатации насосов

Регулирование работы и смазывание насосов

Автоматическое управление насосными установками

Эксплуатация поршневых насосов

Эксплуатация центробежных насосов

Объемные компрессоры. Общие сведения

Основные параметры поршневых компрессоров

Способы регулирования производительности поршневых компрессоров

При соединении деталей трубопровода с трубопроводной арматурой требуется обеспечить герметичность этих соединений, чтобы избежать утечки среды.

Неплотность особенно опасна при транспортировании агрессивных и взрывоопасных сред, а также находящихся под давлением и имеющих высокую температуру.

Основным типом разъемных соединений трубопроводов являются фланцевые соединения, а его неотъемлемым элементом – прокладка.

Материал прокладки должен обладать следующими свойствами:

ü эластичностью, чтобы при создании давления заполнить мельчайшие неровности поверхности фланца, обеспечивая герметичность соединения;

ü прочностью, для того чтобы выдержать силу давления среды;

ü стойкостью к действию агрессивных сред.

В зависимости от назначения и условий работы трубопроводной арматуры в качестве материала прокладок применяют картон, паронит, листовой асбест, резину, фторопласт, полиэтилен, алюминий, свинец, медь, мягкую отожженную сталь.

Выбор прокладочных материалов для уплотнения фланцевых соединений зависит от транспортируемой среды и ее рабочих параметров.

Некоторые материалы прокладок в зависимости от параметров среды и типов уплотнительных поверхностей представлены в таблице 9.

Таблица 9 – Материалы прокладок в зависимости от параметров среды и типов уплотнительных поверхностей


Продолжение таблицы 9

Материал прокладок Рабочая Среда Предельная темпера- тура, 0 С Предел рабочего давления, МПа
гладкая поверх -ность выступ–впадина шип–паз
3. Паронит маслобензо- стойкий (ПМБ) 4. Резина техническая кислотощелочностойкая (КЩ) 5. Резина техническая маслобензостойкая (МБ) 6. Резина техническая теплостойкая (Т) 7. Картон асбестовый 8. Фторопласт 4 9. Алюминий отожженный (АМЦ) 10. Медь листовая (М 2) 11.Свинец марки С2 12.Гофрированные асбоалюминиевые 13.Спиральные из стали 12Х18Н10Т (наполнитель – асбест) Легкие нефтепродукты Тяжелые нефтепродукты Кислород, азот газообразный Кислород, азот жидкий Коксовый газ Вода, воздух, нейтральные растворы, нейтральные газы и пары, серная кислота (до 65%), соляная кислота (до 30%) Тяжелые нефтепродукты, керосин, масла, бутиловый спирт Водяной пар, сухие нейтральные и инертные газы Углеводороды жидкие и газообразные, мазут, масла, смолы Кислоты, щелочи, растворители и органические жидкости Углеводороды жидкие и газо- образные, мазут, масла, смолы Вода перегретая, водяной пар, жидкие и газообразные нефтепродукты Растворы серной и уксусной кислот (до 60%), хлор сжиженный Тяжелые и легкие нефтепродукты, углеводородные газы, дымовые газы, диоксид углерода Водяной пар, сухие газы, нефтепродукты – 182 от минус 30 до 50 от минус 30 до 50 от минус 196 до 250 от минус 196 до 250 от минус 70 до 250 2,5 2,0 2,5 0,25 2,5 1,0 1,0 1,0 0,15 – 1,6 2,5 0,6 2,5 2,5 – – 5,0 – 6,4 – – – – – 4,0 10,0 – 6,4 10,0 вакуум – 5,0 – – – – – – 2,5 вакуум вакуум – – –

Продолжение таблицы 9



Для герметизации сальников трубопроводной арматуры и сальниковых компенсаторов применяют набивки в виде шнуров, сплетенных из асбестовых или пеньковых нитей, пропитанных различными составами, придающими им стойкость к агрессивным средам.

Материал для набивки сальников выбирают в зависимости от условий работы. Асбестовая прожиренная набивка может быть использована при температурах не выше 200 0 С, так как при более высоких температурах жировые вещества вытекают, и плотность сальника снижается.

При температурах выше 200 0 С применяют асбестовую прографиченную набивку или специальные асбометаллические набивки, пропитанные особым составом, стойким к разрушению под влиянием транспортируемых сред и высокой температуры.

Набивку из фторопласта применяют в виде колец или шнура, который обеспечивает высокую стойкость к кислым и щелочным средам при температуре до 250 0 С.

Сальниковая набивка должна быть изготовлена из плетеного шнура квадратного сечения по ширине, равной ширине сальниковой камеры. Из такого шнура нарезают отдельные кольца со скошенными под углом 45 0 концами. Кольца следует укладывать в сальниковую коробку вразбежку линий разреза, с уплотнением каждого кольца в отдельности. Грундбукса при сборке должна входить в камеру не менее чем на 5 мм, но не более 1/7 ее высоты.

Подтяжку сальников следует выполнять равномерно, без перекосов грундбуксы.


ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

1. По каким основным признакам можно классифицировать трубопроводную арматуру?

2. Что такое условный диаметр? Что такое условное давление?

3. Что такое задвижка? Какие бывают задвижки, где и как они устанавливаются?

4. Перечислите основные преимущества и недостатки задвижек по сравнению с другими видами трубопроводной арматуры.

5. Что такое вентиль? Из каких основных элементов он состоит?

6. Перечислите основные преимущества и недостатки вентиля по сравнению с другими видами трубопроводной арматуры.

7. Какие бывают типы уплотнительных поверхностей вентиля?

8. Что такое кран? Какие типы кранов вы знаете?

9. Перечислите основные преимущества и недостатки кранов по сравнению с другими видами трубопроводной арматуры.

11. Что относится к предохранительной и защитной трубопроводной арматуре?

12. Как маркируется трубопроводная арматура?

13. Расшифруйте маркировку следующих видов трубопроводной арматуры: 15кп3п; 11ч3бк; 30с64бр.

14. По каким причинам нарушается нормальная работа трубопроводной арматуры?

15. Что такое ревизия трубопроводной арматуры, в чем она заключается?

16. Как производится ремонт трубопроводной арматуры (вентиля, задвижки, крана)? Какие при этом используются приспособления?

17. Как производится испытание трубопроводной арматуры? Какие бывают виды испытания?

18. Сформулируйте основные принципы выбора трубопроводной арматуры.

19. Какими свойствами должна обладать прокладка?

20. Перечислите основные материалы прокладочных материалов и области их применения.

21. До какой максимальной температуры можно применять фторопласт в качестве прокладочного материала?

23. Как правильно произвести набивку сальника?

Для изготовления прокладок применяются как неметаллические материалы, так и металлы. Металлические прокладки используются для ответственных объектов в тяжелых условий работы арматуры (высокой температуры, высокого давления и т. д.), но они требуют значительно больших усилий затяга соединения, чем мягкие прокладки.

Неметаллические материалы. Резина является наиболее пригодным материалом для уплотнения разъемных соединений. Она эластична, требует небольших усилий затяга уплотнений, практически непроницаема для жидкостей и газов. Резина применяется до температуры 50° С, а теплостойкая резина - до 140° С.

Для прокладок обычно применяется листовая техническая резина по ГОСТ 7338-65 без тканевых прослоек, так как при наличии прослоек иногда создается протечка среды через волокна прослойки. По твердости резину под¬разделяют на мягкую, средней твердости и твердую. Существует пять типов резины: маслобензостойкая (марки А, Б и В в зависимости от степени стойкости), кислотощелочестойкая, теплостойкая, морозостойкая и пищевая.

Прокладки из целлюлозного прокладочного картона широко используются в арматуре для пара низкого давления и воды при рабочей температуре tp < 120° С и рабочем давлении Pp до 0,6 МПа, для масла при tp < 80° С и Pр < 4 МПа и в других случаях. Применяется картон водонепроницаемый и прокладочный (пропитанный), последний используется и для нефтепродуктов при tр <= 85° С и рр < 0,6 МПа. Для картона допускается контактное давление не более 55 МПа. Для высоких температур целлюлозный картон не пригоден, так как обугливается.

Фибра листовая (ФЛАК) представляет собой бумагу или целлюлозу, обработанную хлористым цинком и затем каландрированную. Применяется для прокладок в арматуре при температуре до 100° С. Используется при работе на керосине, бензине, смазочном масле, кислороде и углекислоте. Коэффициент трения между фиброй и сухой сталью μ = 0,33.

Асбест в качестве прокладочного материала используется в арматуре при повышенных и высоких температурах. Материал минерального происхождения в технике используется после переработки в виде листового картона пли шнура. При 500° С прочность асбеста снижается на 33%, а при 600° С - на 77%. К щелочам асбест устойчив, к кислотам устойчив антофилит-асбест.

Асбестовый непропнтанный картон имеет рыхлое строение, низкую прочность, ио высокую жаростойкость, используется для арматуры, работающей при температуре до 600° С; задвижек для горячего дутья, генераторных и дымовых газов и для другой арматуры, не работающей на жидкости. Пропитанный натуральной олифой асбестовый картон может быть использован для нефтепродуктов при давлении до 0,6 МПа и температуре tp < 180° С, однако замена его при смене прокладок или ремонте арматуры затруднена, так как он прилипает к металлическим поверхностям. Для уплотнения средних фланцев газовых больших задвижек используется также асбестовый шнур, который укладывается спиралью на поверхности фланца, предварительно смазанной техническим вазелином. Кроме того, для прокладок используются специальные ткани с пряжей из мягкой латунной или никелевой проволоки. Изготовляют также комбинированные прокладки из колец различной формы и сечений, сердцевина которых выполняется из асбеста, а облицовка из тонкого металлического или пластмассового листа. Такие прокладки имеют хорошие эксплуатационные свойства, но сложны в изготовлении.

Листовой паронит (ГОСТ 481-71) изготовляется из смеси асбестовых волокон (60-70%), растворителя, каучука (12-15%), минеральных наполнителей (15-18%) и серы (1,5-2,0%) путем вулканизации и вальцевания под большим давлением. Теплостойкость паронита зависит от количества в нем резины.

Паронит является универсальным прокладочным материалом и используется в арматуре для насыщенного и перегретого пара, горячих газов и воздуха, растворов щелочей и слабых растворов кислот, аммиака, масел и нефтепродуктов при температуре до 450°С. Коэффициент трения паронита по металлу μ =0,5. Упругость паронита невелика. При контактном давлении свыше 32 МПа все неплотности в материале устраняются. Релаксация напряжений в период, ближайший после затяга, значительна. После обжатия при контактном давлении 70 МПа герметичность соединения сохраняется и при контактном давлении на прокладке, равном рабочему. Наибольшее допускаемое контактное давление на паронит 130 МПа, Чтобы улучшить герметичность соединения и увеличить сопротивление распору прокладки средой, на уплотнительных поверхностях соединения обычно создают две-три узкие канавки треугольного сечения, в которые паронит вдавливается под действием усилия затяга. Такие канавки делаются и при использовании других неметаллических прокладок. Листы паронита изготовляются толщиной до 6 мм. Прокладку целесообразно применять возможно более тонкую» но толщина ее должна быть достаточной для герметизации соединения при данной шероховатости обработанных поверхностей и площади уплотнения. Паронит листовой выпускается следующих марок: ПОН, ПМБ, ПА, ПЭ (см. табл. 4.29), ПС и ПСГ (последние две - специальные).

4.29. Условия применения паронита (по ГОСТ 481-71)

Обозна- Допустимая Допу-
чение и температура, стимое Область
наимено­вание давле­ние. применения
марок от до МПа
Вода пресная _ 250 6,4
Пар водяной 450 6,4
Воздух -50 + 100 1
Сухие нейтральные и инертные газы __ 450 6,4
Водные растворы -15 100 2,5
ПОН(паронит

назначения)

солей различной кон-
центрации
Аммиак жидкий -40 + 150 2,5
Спирты 150 1,6
Парафин 150 1,6
Тяжелые нефтепро­дукты 200 6,4
Легкие нефтепро­дукты 150 2,5
Жидкий кислород -182 0,25 Для уплотнения соединений типов:

«гладкие» с давле-

Вода морская 50 4

нием рабочей сре-

Рассолы -40 +50 10

ды не более

Аммиак жидкий и газообразный -40 + 150 2,5

4 МПа; «шип- паз»; «выступ-

Коксовый газ 490 6,4 впадина»
Воздух -50 200 1,6
Кислород и азот -182 0,25
ПМБ (паронит маслобензостойкий) жидкий
Сжиженные и га- -40 +60 1,6
зообразные углеводо-
роды С х -С 6
Кислород и азот — . 150 5
газообразные
Парафин 150 1,6
Расплав воска ___ 150 1
Легкие нефтепро­дукты 200 2,5
Тяжелые нефтепро- 300 2
дукты
Минеральные масла 150 2.5

Продолжение табл. 4.29

Обозна­чение и наимено­вание марок Среда Допустимая температура, Допу­стимое давле­ние, МПа Область применения
ПА (паронит, армиро­ванный сеткой) Вода пресная

Водяной пар

Воздух, нейтраль­ные и инертные сухие газы

Тяжелые нефтепро­дукты

Легкие нефтепро­дукты, минеральные масла

10 Для уплотнения соединений типов: «гладкие» с давле­нием рабочей сре­ды не более 4 МПА; «шип- паз»; «выступ — впадина*
ПЭ Щелочи с концен­трацией 300-400 г/л, водород, кислород

Аммиак жидкий и газообразный

Азотная кислота, (10%-ный раствор)

Нитрозные газы

2,5 Электролизеры, арматура и др. Минимальное кон­тактное давление, необходимое для герметизации 10 МПа для со­единений, рабо­тающих под дав­лением 0,02 МПа, и 30 МПа для со­единений, рабо­тающих под дав­лением 1 МПа
Примечание.

Применение паронита в случаях, не предусмотренных данной таблицей, допускается после проведения промышленных испытаний и согласования ре­зультатов с отраслевым научно-исследовательским институтом Министерства нефтеперерабатывающей и нефтехимической промышленности СССР.

Паронит марок ПОН и ПА испытывается на уплотнительную способность в среде пара при температуре 450° С и давлении 10 МПа. Прокладка наружным диаметром 120 мм и внутренним 80 мм, смазанная маслографитовой пастой, должна при контактном давлении 22,5 МПа сохранять герметичность в течение 30 мин. Кроме того, паронит этих марок, а также марки ПМБ испытывается на уплотняющую способность в керосине при температуре 20° С и давлении 15 МПа. Прокладка наружным диаметром 120 мм и внутренним 80 мм, смазанная маслографитовой пастой, при контактном давлении 32,4 МПа должна сохранять герметичность в течение 30 мин.

Паронит специальной марки ПС предназначен для этилового спирта, жидкого кислорода, масла Л-1 и воздуха. Применяется для давлений до 7,5 МПа при рабочей температуре от -182 до +400° С в зависимости от типа соединения и рабочей среды. Паронит марки ПСГ (паронит специальный графитированный) предназначается для этилового спирта, водяного пара и парогаза. Применяется для давлений до 7,5 МПа при рабочей температуре до 450° С (для спирта - до 50° С). Листы паронита имеют размеры от 0,3 X 0,4 до 1,5 X 3,0 м, толщина листов паронита марки ПОН - от 0,4 до 6,0 мм. Каждая марка паронита имеет свой диапазон размеров и толщин.

Пластмассы для прокладок арматуры применяются при невысоких темпе­ратурах среды. Пластикат поливинилхлоридный по эластичности наиболее близко подходит к резине, используется для арматуры в химических производствах при сравнительно узком интервале температур (от -15 до 4-40° С). Полиэтилен в ка­честве прокладок может использоваться при температуры среды от -60 до +50° С. Фторопласт-4 и фторопластовый уплотнительный материал (ФУМ), выпускаемый в виде шнуров различных профилей и сечений, применяются для температур от -195до +200°С. Винипласт как прокладочный материал используется ограни­ченно.

Металлические материалы. Металлические прокладки изготовляются в виде плоских колец прямоугольного сечения из листового материала или в виде колец фасонного сечения из труб или поковок. К последним относятся линзовые прокладки чечевичного сечения, прокладки сечением в виде овала, расположен­ного параллельно оси прокладки, и гребенчатые прокладки, имеющие сечение прямоугольника с треугольными выступами в виде гребенки. Помимо этого из­готовляются комбинированные прокладки, состоящие из мягкой сердцевины (асбеста или паронита), облицованной листовым материалом из алюминия, малоуглеродистой стали или коррозионностойкой стали 08Х18Н10Т или 12Х18Н10Т. Достоинства металлических прокладок: достаточная плотность при высоких давлениях и температурах среды, коэффициент температурного расширения близок к коэффициенту температурного расширения материала фланца и шпилек или болтов, возможность повторного использования после соответствующего ремонта. К недостаткам следует отнести: необходимость создания больших усилий для обеспечения герметичности соединения, относительно низкие упругие свойства, значительную релаксацию напряжений и относительно высокую сто¬имость изготовления. В табл. 4.30 приведены некоторые сведения о металлах, применяемых для изготовления прокладок арматуры.

4.30. Металлы, применяемые для изготовления прокладок

Допустимая

Наимено- Марка Среда

температура, *С

вание
от до
Сталь низ- 05кп (особая) Водяной пар «я.
коуглеро-
дистая ти-
па Армко
То же 05кп (особая) Щелочи, кислоты, гнзы, содержащие оеру. Не применяет­ся для водных рас­творов кислот и ше лочей -70
Сталь 0,5; 0,8 Водяной пар, неф­тепродукты -40
Коррозион- 12Х18Н10Т» Водяной пар, неф- -253
ностойкая 08Х18Н10Т тепродукты, корро-
сталь зионные среды, кро­ме серной кислоты
Алюминий АО; А; АД1 Воздух, вода, неф­тепродукты, азот­ная, фосфорная и другие кислоты, су­хой хлор, сернистые газы -253
Никель НП1, НВК Водяной пар, хлор и др.; нейтральные среды -200
Монель- НМЖМо.28-2,5-1,5 Морская вода.
металл коррозионные сре­ды, водяной пар
Медь М1.М2 Криогенные и другие нейтраль­ные среды -253
Свинец С2 Коррозионные среды, в том числе серная -200

Набивочные материалы

Материалы для сальниковой набивки (табл. 4.31) должны иметь высокую упругость, физическую стойкость при рабочей температуре, химическую стой¬кость против действия рабочей среды и возможно малый коэффициент трения. В качестве набивочных материалов в основном применяются: хлопчатобумажные материалы, пенька, асбестовый шнур, асбест, графит, тальк, стекловолокно и фторопласт. Наиболее часто используется асбест в виде плетеного шнура квадратного или круглого сечения, но могут быть использованы и скатанные шнуры без плетения или чесания волокна (пенька и др.). Наиболее целесообразно применение набивки из заранее приготовленных и отформованных колец.

4.31. Основные материалы для сальниковой набивки (с учетом ГОСТ 5152 66)

Допустимая Допу-
температура стимое

давление,

Набивка Рабочая среда
до
Плетеные хлопчатобумажные
ХБС (сухая) Воздух; питьевая вода, спирты, пишеоые продукты, смазочные мчсла, органиче­ские растворители, углеводо­роды, нейтральные растворы солей 100 20
ХБС (сухая) Жидкий и газообразный ам­миак -40
ХБП (пропитан- Воздух, промышленная во- 100 20
ная) да, нефтяное топливо, смазоч­ные масла, инертные газы и пары, углеводороды

Плетеные пеньковые

ПС (сухая) Воздух, промышленная во­да, водяной пар, смазочные масла, нефтяное топливо свет­лое, углеводороды 100 16
ПС (сухая) Жидкий и газообразный азот -40
ПП (пропитанная) Воздух, промышленная по­да, топливо нефтяное темное, смазочные масла, инертные пары и газы, углеводороды, растворы щелочей, соленая вода 100 16

Продолжение табл. 4.31

Продолжение табл. 4.31

Чугун.

Это нековкий сплав железа с углеродом (2,5-3,6%). Он обладает хорошими литейными качествами, низкой стоимостью, но это хрупкий материал (разрушается сразу, в пластичных материалах есть период пластических деформаций, когда можно установить момент наступления разрушения). В связи с этим чугун имеет ограниченную область применения.

Из чугуна изготавливают арматуру, кронштейны, стойки.

Серый чугун СЧ15-32 (цифры означают предел прочности при растяжении и при сжатии соответственно) используется для изготовления арматуры на сети низкого давления.

Ковкий чугун КЧ30-6 (коваться не может, но имеет повышенные пластичные свойства) используется для арматуры сетей среднего и высокого давления.

Жаростойкий чугун ЖЧ-1 используется для арматуры, работающей при температуре до 600 0 С.

Прокладочные материалы.

Их назначение – обеспечить плотность неподвижных соединений. Поэтому они:

  1. должны быть дешевыми и доступными (т.к. их необходимо достаточно часто заменять),
  2. должны быть упругими (для достижения высокой плотности соединений),
  3. должны иметь достаточную прочность (чтобы не разрушиться, не раздавиться и не выдавливаться при затяжке),
  4. должны сохранять свои физические свойства при температуре рабочей среды,
  5. не должны подвергаться коррозии.

Паронит используют для холодных и горячих газов с температурой до 450 0 С в газопроводах с давлением до 1,2 МПа, в установках СУГ давлением до 1,6 МПа, для нефтепродуктов.

Пластификат, фторопласт для уплотнения фланцевых соединений в газопроводах с давлением до 1,2 МПа, в установках СУГ давлением до 1,6 МПа.

Металлические кольца . Их «-» - создание необходимых усилий для достижения плотности соединений. Алюминий – для уплотнения оборудования, установок СУГ при всех давлениях, а также для сернистых газов. Медь – для уплотнения оборудования, установок СУГ.

Резина обладающая высокой морозо- и маслобензостойкостью используется для уплотнения соединений в газопроводах с давлением до 0,6 МПа.

Для придания прокладкам огнестойких свойств применяют асбест (асбестовый картон, асбестовое армированное полотно).

Льняная прядь промасленная свинцовым суриком используется для уплотнения резьбовых соединений.

Большинство конструкций газового оборудования имеет сальниковое устройство для уплотнения подвижных соединений.

Материалы сальниковых набивок должны иметь:

  1. высокие упругие свойства
  2. физическую стойкость против действия рабочей среды
  3. малый коэффициент трения

Для этих целей применяют: асбест в виде плетеного шнура,

пеньковый шнур,

графит,

тальк,

фторопласт и др.

(В расплавленное говяжье сало опускают шнур, кипятят 5 минут, охлаждают и обваливают в порошке графита.)

Материаловедение - Неметаллические и композиционные материалы

НЕМЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ

К традиционным неметаллическим материалам относятся волокнистые материалы (древесина), полимерные органические и неорганические материалы (пластмассы), каучуки и резины, клеи и герметики, лакокрасочные покрытия, стекло, керамика, а также материалы нового поколения – композиционные материалы на неметаллической основе.

ПЛАСТИЧЕСКИМИ МАССАМИ (пластмассами, пластиками) называют многокомпонентные искусственные материалы на основе природных или синтетических высокомолекулярных органических веществ, в состав которых входят: высокомолекулярная основа-связка (синтетические смолы, эфиры, целлюлоза); наполнители (порошкообразные, волокнистые, сетчатые вещества органического или неорганического происхождения), – пластификаторы (олеиновая кислота, стеарин, дибутилфторат), стабилизаторы, красители, отвердители и другие специальные добавки.

Классификация пластмасс

а) по типу связующего (полимера): фенопласты (основа – фенольные и фенолоальдегидные смолы); эпоксипласты (эпоксидная смола); амидопласты (полиамидная смола).

б) по виду наполнителя:

пресс-порошки – с порошкообразным органическим (древесная мука, целлюлоза, графит) или минеральным наполнителем (тальк, кварцевая мука, микроасбест и др.);

пресс-материалы :

волокниты – с волокнистым наполнителем из очесов хлопка и льна;

стекловолокниты – в виде стеклянных нитей;

асбоволокниты – в виде нитей асбеста;

слоистые пластики – с тканым и с листовым наполнителем, в том числе бумажные листы (гетинакс), хлопчатобумажные ткани (текстолит), стеклоткани (стеклотекстолит), асбестовые ткани (асботекстолит);

газонаполненные пластики – с воздушным наполнителем (пенопласты, поропласты).

в) в зависимости от поведения смолы при нагреве:

реактопласты

термопласты

Методы переработки пластмасс: экструзия, прессование, литьевое прессование, литье, вакуумное и пневматическое формование, вальцевание, вспенивание, сварка, горячее напыление, строгание в листы, обработка на станках со снятием стружки

Резинами называют высокомолекулярные материалы, которые получают при вулканизации (нагрев до 100–150С) смеси натурального или синтетического каучука с различными наполнителями (ингредиентами). В процессе вулканизации образуются пространственные «сшитые» (сетчатые) структуры, заменяя линейную или слабоветвистую структуру каучуков. Здесь активную роль играет вулканизирующее вещество – сера (или селен), от количества которого зависит величина ячейки структуры, эластичность и твердость резины: а) мягкие резины (2–4 % S); б) жесткие – полуэбониты (12–13 % S); в) эбониты (30–50 % S). Кроме серы в состав резин входят:наполнители, мягчители, противостарители, антипирены, фунгициды, дезодоранты, красители ипигменты, регенерат.

Резинотехнические изделия получают при вулканизации (термической обработке) прессованных деталей из сырой резины. Резиновые изделия часто армируют тканью или металлической сеткой.

Клеи и Герметики

относятся к пленкообразующим материалам, так как они способны при затвердевании образовывать прочные пленки, хорошо прилипающие к различным материалам.

Клеи применяются для склеивания разнородных материалов (металла, керамики, пластмасса, дерева), а герметики обеспечивают уплотнение и герметизацию клепаных, сварных и болтовых соединений, топливных отсеков и баков, различных металлических конструкций, приборов, агрегатов, швов, стыков и т.д. Клеи и герметики могут быть в виде жидкостей, паст, замазок, пленок.

Лакокрасочные материалы (лкм)

Лакокрасочные материалы представляют собой многокомпонентные составы, в жидком состоянии наносимые на поверхность изделий и высыхающие с образованием пленок, удерживаемых силами адгезии. Назначение лакокрасочных покрытий: а) защита металлов от коррозии, дерева и тканей – от гниения и набухания; б) в декоративных целях – придание изделиям желаемого внешнего вида; в) для достижения специальных свойств – электроизоляционных, теплозащитных, светостойких и др.

Различают лакокрасочные материалы: прозрачные (лак); кроющие (эмаль) и подготовительные (грунтовка). Покрытия наносятся вручную кистью, распылением, окунанием и другими способами. Надежность защиты поверхности изделий обычно достигается использованием многослойных покрытий.

Стекла

Стеклами (или стеклом) называют переохлажденные вещества, получаемые из жидких расплавов неорганических соединений и их смесей.

Основой стекол являются стеклообразуюшие оксиды, по которым стекла разделяют на силикатные (SiO 2), алюмосиликатные (А1 2 О 3 иSiO 2), боросиликатные (В 2 О 3 иSiO 2), алюмоборосиликатные А1 2 О 3 , В 2 О 3 иSiО 2), борофторалюмосиликатные (В 2 О 3 , А1 2 О 3 ,FиSiO 2), алюмофосфатные (А1 2 О 3 и Р 2 О 5), алюмосиликофосфатные (А1 2 О 3 ,SiO 2 и Р 2 О а), силикотитановые (SiO 2 и ТiO 2), силикоциркониевые (SiО 2 иZrО 2) и др.

По назначению стекла классифицируют на химически стойкие, термостойкие, электровакуумные, электрические, оптические и т. п.

Достоинством стекол является их способность к многократному переплаву без изменения свойств.

Жидкую однородную стеклянную массу перерабатывают в изделия различными методами : вытягиванием (листовое стекло, трубки и стержни), прокаткой (листовое стекло, трубки и стержни), прессованием (толстостенные изделия), методом выдувания (тонкостенные изделия сложной конфигурации, например, баллоны ламп, электронно-лучевых трубок и других приборов), методом спекания стеклянных порошков (детали сложной конфигурации, эксплуатируемые в условиях больших тепловых нагрузок). Применяют также методы прямого литья (для низковязких масс и изготовления несложных изделий), литья под давлением и центробежного литья. Техника и технологические приемы идентичны с переработкой металлов. Стеклянные изделия и полуфабрикаты после изготовления подвергают отжигу при 400–600 °С для снятия остаточных напряжений. Длительность отжига зависит от толщины изделия.

Ситаллами называют искусственные материалы микрокристаллического строения, получаемые направленной инициированной кристаллизацией изделий из стекол.

От стекол ситаллы отличаются более высокими физико-механическими свойствами (твердостью, химической стойкостью, низкими диэлектрическими потерями при высоких частотах и температурах, высокой диэлектрической проницаемостью при высоких температурах).

Изделия из ситаллов формуют методами вытягивания и прокатки, прессованием, литья под давлением.

Керамика – неорганический материал, получаемый из отформованных минеральных масс в процессе высокотемпературного обжига (спекание), в результате которого при 1200–2500 °С формируется структура материала, и изделие приобретает необходимые физико-механические свойства. Керамика была первым конкурентоспособным по сравнению с металлами классом материалов для использования при высоких температурах.

Основными компонентами технической керамики являются: а) оксиды (А1 2 O 3 – корунд,ZrO 2 ,MgO,CaO,BeO,ThO 2 ,UO 2), б) бескислородные соединения металлов (карбиды, бориды, нитриды, силициды, сульфиды).

В керамике могут присутствовать фазы: а) кристаллическая (основа в виде химических соединений или твердых растворов), б) стекловидная (в виде прослоек стекла в количестве 1–10 %, связывающих кристаллическую фазу), в) газовая (находится в порах керамики).

Большинство видов специальной технической керамики обладает плотной спекшейся структурой поликристаллического строения, для ее получения применяют специфические технологические приемы. Принципиальными недостатками керамики являются ее хрупкость и сложность обработки.

К основным областям применения керамических материалов относятся режущий инструмент, детали двигателей внутреннего сгорания и газотурбинных двигателей и др.

Прокладочные и уплотнительные материалы

Прокладочные материалы применяются для герметизации соединений корпусных или иных деталей (особенно при высоких давлениях и температурах внутри герметизируемой полости), для теплоизоляции и электроизоляции разъемных частей, устранения возможного просачивания жидкости и прорыва газов.

В качестве прокладочных материалов используют естественные, синтетические или композиционные материалы.

Естественные материалы – кора пробкового дерева, асбест, войлок и отожженная медь. Кора пробкового дерева применяется при небольших давлениях и температурах. Основное ее достоинство – маслобензостойкость. Из-за дефицитности применение коры пробкового дерева ограничено. Часто используют пробковую крошку в синтетическом клеящем составе. Асбест обладает прочностью, эластичностью, диэлектрическими свойствами, он устойчив при температурах до 1 500 °С. Войлок – плотный шерстяной материал. Войлочные прокладки предотвращают попадание в соединения посторонних загрязнений, задерживают смазочные масла, смягчают удары и вибрации, являются хорошим шумоизолятором. При высоких температурах и давлениях применяют красную отожженную медь.

Синтетические материалы – маслобензостойкая резина, различные пластмассы. Эти материалы обычно являются хорошими диэлектриками, но имеют низкие морозостойкость, теплостойкость и малый срок службы. Синтетические материалы применяются в неответственных соединениях или в качестве матрицы композиционных материалов.

Композиционные материалы – это целлюлозосодержащие материалы или композиция синтетический материал–упрочнитель. Целлюлозосодержащие материалы (бумага, плотный картон) применяются в качестве тонких прокладок в узлах, не подвергаемых воздействию влаги. Из бумаги, обработанной хлористым цинком, касторовым маслом и глицерином, получают фибру – прочный и долговечный диэлектрик, стойкий к маслу и воде. Из композиционных материалов чаще всего применяют композиции на основе маслобензостойкой резины. В качестве наполнителя используют распушенный асбест, графитный порошок, стальную фольгу, стальную проволоку или их сочетание. Композиционные прокладочные материалы наиболее универсальны, относительно дешевы, имеют большую долговечность.

Технические жидкости и газы

1) Смазочные материалы – вещества, обладающие смазочным действием, т.е. способностью снижать трение, уменьшать скорость изнашивания и устранять заедание трущихся поверхностей. Большинство смазочных материалов, за исключением твердых смазок (графит, сульфид молибдена и др.), являются жидкими.

2) К технологическим жидкостям относят: а) разделительные составы , предназначенные для снижения адгезии в контакте пресс-форм и литьевых форм с изделиями из резины и пластических масс, б) моющие жидкости (для промывки деталей и узлов машин в процессе их производства и ремонта), в) закалочные среды (приготовляемые на основе масел, водных растворов солей, водорастворимых полимеров).

3) Смазочно-охлаждающие жидкости (СОЖ) совмещают свойства смазочных масел и технологических жидкостей. Они одновременно смазывают поверхность инструмента и обрабатываемой детали, облегчая деформирование и улучшая качество получаемой поверхности, отводят теплоту, смывают стружку, пыль и другие загрязнения, а также защищают поверхность инструмента и деталей от коррозии. Вследствие многофункционального назначения СОЖ для их приготовления используют широкую номенклатуру масел, синтетических жидкостей, водных растворов, присадок и добавок.

4) Жидкие топлива – бензины, дизельные топлива, керосин и мазут, которые являются продуктами перегонки нефти. В машиностроении эти жидкости используют в качестве компонентов моющих жидкостей, СОЖ, растворителей и т.д.

5) При химико-термической обработке сталей применяют специальные газовые среды . Газы (азот, аммиак, аргон, ацетилен, водород, фреон , кислород, криптон и ксенон в электровакуумной технике для наполнения различных приборов, метан и пропан , углекислый ) и их смеси имеют широкое применение и в качестве топлив при газопламенной резке и закалке, плазмообразующих сред в процессах ионно-плазменной обработки, сварочных газов, хладагентов в холодильных установках и т.д.

6) Различные масла и синтетические жидкости, используемые в качестве рабочих тел в прессах, гидравлических передачах и приводах, вакуумных насосах, амортизаторах, тормозах и других устройствах . К ним относятся амортизационные жидкости, гидравлические масла, вакуумные масла, демпфирующие жидкости, приготовляемые в основном на базе минеральных масел и кремнийорганических жидкостей.

Абразивные материалы

(от латинского abrasio - соскабливание)– зернистые или порошкообразные вещества, предназначенные для оснащения рабочей части режущих инструментов.

Естественными абразивами являются: корунд, наждак, фанат, кремень, полевой шпат, пемза и др. В промышленности наиболее распространены искусственные абразивы: электрокорунд, карборунд и карбид бора.

Из порошков изготовляют шлифовальные круги различной формы, бруски, абразивные головки, сегменты, предназначенные для производства специальных абразивных инструментов.

КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ

– это материалы, состоящие из сильно различающихся по свойствам друг от друга, взаимно нерастворимых компонентов (из сравнительно пластичного матричного материала, который связывает композицию и придает ей нужную форму и более твердых и прочных веществ, являющихся упрочняющими наполнителями). Композиционные материалы используют для производства летательных аппаратов, в машиностроении, приборостроении, энергетике, в электронной, радиотехнической и электротехнической промышленности, а также на транспорте, в строительстве и других отраслях народного хозяйства.

В зависимости от материала матрицы различают композиционные материалы с металлической матрицей или металлические композиционные материалы (МКМ), с полимерной – полимерные композиционные материалы (ПКМ) и с керамической – керамические композиционные материалы (ККМ).

По типу упрочняющих наполнителей композиционные материалы подразделяют:

а) дисперсноупрочненные

б) армированные

или волокнистые

в) слоистые

В них искусственно вводят мельчайшие равномерно распределенные тугоплавкие частицы карбидов, оксидов, нитридов и другие, не взаимодействующие с матрицей и не растворяющиеся в ней вплоть до температуры плавления фаз

Арматурой в армированных композиционных материалах могут быть волокна различной формы (нити, ленты, сетки разного плетения). Их прочность определяется прочностью армирующих волокон, которые воспринимают основную нагрузку

Слоистые композиционные материалы набираются из чередующихся слоев волокон и листов матричного материала (типа «сэндвич»). Возможно поочередное использование слоев матрицы из сплавов с различными механическими свойствами