В процессе фотосинтеза происходит поглощение солнечной энергии. Процесс фотосинтеза у растений. Механизм темновой стадии фотосинтеза

ОПРЕДЕЛЕНИЕ: Фотосинтез – это процесс образования органических веществ из углекислого газа и воды, на свету, с выделением кислорода.

Краткое объяснение фотосинтеза

В процессе фотосинтеза участвуют:

1) хлоропласты,

3) углекислый газ,

5) температура.

У высших растений фотосинтез происходит в хлоропластах – пластидах (полуавтономные органеллы) овальной формы, содержащих пигмент хлорофилл, благодаря зеленому цвету которого части растения также имеют зеленый цвет.

У водорослей хлорофилл содержится в хроматофорах (пигментсодержащие и светоотражающие клетки). У бурых и красных водорослей, обитающих на значительной глубине, куда плохо доходит солнечный свет, имеются другие пигменты.

Если посмотреть на пищевую пирамиду всех живых существ, фотосинтезирующие организмы находятся в самом ее низу, в составе автотроф (организмов, синтезирующих органические вещества из неорганических). Поэтому они являются источником пищи для всего живого на планете.

При фотосинтезе кислород выделяется в атмосферу. В верхних слоях атмосферы из него образуется озон. Озоновый экран защищает поверхность Земли от жесткого ультрафиолетового излучения, благодаря чему жизнь смогла выйти из моря на сушу.

Кислород необходим для дыхания растений и животных. При окислении глюкозы с участием кислорода в митохондриях запасается почти в 20 раз больше энергии, чем без него. Это делает использование пищи гораздо более эффективным, что привело к высокому уровню обмена веществ у птиц и млекопитающих.

Более подробное описание процесса фотосинтеза растений

Ход фотосинтеза:

Процесс фотосинтеза начинается с попадания света на хлоропласты – внутриклеточные полуавтономные органеллы, содержащие зеленый пигмент. Под действием света хлоропласты начинают потреблять воду из почвы, расщепляя ее на водород и кислород.

Часть кислорода выделяется в атмосферу, другая часть идет на окислительные процессы в растении.

Сахар соединяется с поступающими из почвы азотом, серой и фосфором, таким путем зеленые растения производят крахмал, жиры, белки, витамины и другие сложные соединения, необходимые для их жизни.

Лучше всего фотосинтез идет под воздействием солнечного света, однако некоторые растения могут довольствоваться и искусственным освещением.

Сложное описание механизмов фотосинтеза для продвинутого читателя

До 60-ых годов 20 века ученым был известен только один механизм фиксации углекислого газа - по С3-пентозофосфатному пути. Однако недавно группа австралийских ученых смогла доказать, что у некоторых растений восстановление углекислого газа происходит по циклу C4-дикарбоновых кислот.

У растений с реакцией С3 фотосинтез наиболее активно происходит в условиях умеренной температуры и освещенности, в основном, в лесах и в темных местах. К таким растениям относятся почти все культурные растения и большая часть овощей. Они составляют основу рациона человека.

У растений с реакцией С4 фотосинтез наиболее активно происходит в условиях высоких температура и освещенности. К таким растениям относятся, например, кукуруза, сорго и сахарный тростник, которые произрастают в теплом и тропическом климате.

Сам метаболизм растений был обнаружен совсем недавно, когда удалось выяснить, что у некоторых растений, имеющих специальные ткани для запаса воды, углекислый газ накапливается в форме органических кислот и фиксируется в углеводах лишь спустя сутки. Такой механизм помогает растениям экономить запасы воды.

Как происходит процесс фотосинтеза

Растение поглощает свет при помощи зеленого вещества, которое называется хлорофилл. Хлорофилл содержится в хлоропластах, которые находятся в стеблях или плодах. Особенно большое их количество в листьях, потому что из-за своей очень плоской структуры листок может притянуть много света, соответственно, получить намного больше энергии для процесса фотосинтеза.

После поглощения хлорофилл находится в возбужденном состоянии и передает энергию другим молекулам организма растения, особенно, тем, которые непосредственно участвуют в фотосинтезе. Второй этап процесса фотосинтеза проходит уже без обязательного участия света и состоит в получении химической связи с участием углекислого газа, получаемого из воздуха и воды. На данной стадии синтезируются разные очень полезные для жизнедеятельности вещества, такие как крахмал и глюкоза.

Эти органические вещества используют сами растения для питания разных его частей, а также для поддержания нормальной жизнедеятельности. Кроме того, эти вещества также получают и животные, питаясь растениями. Люди тоже получают эти вещества, употребляя в пищу продукты животного и растительного происхождения.

Условия для фотосинтеза

Фотосинтез может происходить как под действием искусственного света, так и солнечного. Как правило, на природе растения интенсивно «работают» в весенне-летний период, когда необходимого солнечного света много. Осенью света меньше, день укорачивается, листья сначала желтеют, а потом опадают. Но стоит появиться весеннему теплому солнцу, как зеленая листва вновь появляется и зеленые «фабрики» снова возобновят свою работу, чтобы давать кислород, такой необходимый для жизни, а также множество других питательных веществ.

Альтернативное определение фотосинтеза

Фотоси́нтез (от др.-греч. фот- свет и синтез - соединение, складывание, связывание, синтез) - процесс преобразования энергии света в энергию химических связей органических веществ на свету фотоавтотрофами при участии фотосинтетических пигментов (хлорофилл у растений, бактериохлорофилл и бактериородопсин у бактерий). В современной физиологии растений под фотосинтезом чаще понимается фотоавтотрофная функция - совокупность процессов поглощения, превращения и использования энергии квантов света в различных эндэргонических реакциях, в том числе превращения углекислого газа в органические вещества.

Фазы фотосинтеза

Фотосинтез – процесс довольно сложный и включает две фазы: световую, которая всегда происходит исключительно на свету, и темновую. Все процессы происходят внури хлоропластов на особых маленьких органах - тилакодиах. В ходе световой фазы хлорофиллом поглощается квант света, в результате чего образуются молекулы АТФ и НАДФН. Вода при этом распадается, образуя ионы водорода и выделяя молекулу кислорода. Возникает вопрос, что это за непонятные загадочные вещества: АТФ и НАДН?

АТФ – это особые органические молекулы, которые имеются у всех живых организмов, их часто называют «энергетической» валютой. Именно эти молекулы содержат высокоэнергетические связи и являются источником энергии при любых органических синтезах и химических процессах в организме. Ну, а НАДФН – это собственно источник водорода, используется непосредственно при синтезе высокомолекулярных органических веществ - углеводов, который происходит во второй, темновой фазе фотосинтеза с использованием углекислого газа.

Cветовая фаза фотосинтеза

В хлоропластах содержится очень много молекул хлорофилла, и все они поглощают солнечный свет. Одновременно свет поглощается и другими пигментами, но они не умеют осуществлять фотосинтез. Сам процесс происходит лишь только в некоторых молекулах хлорофилла, которых совсем немного. Другие же молекулы хлорофилла, каротиноидов и других веществ образуют особые антенные, а также светособирающие комплексы (ССК). Они, как антенны, поглощают кванты света и передают возбуждение в особые реакционные центры или ловушки. Эти центры находятся в фотосистемах, которых у растений две: фотосистема II и фотосистема I. В них имеются особые молекулы хлорофилла: соответственно в фотосистеме II - P680, а в фотосистеме I - P700. Они поглощают свет именно такой длины волны(680 и 700 нм).

По схеме более понятно, как все выглядит и происходит во время световой фазы фотосинтеза.

На рисунке мы видим две фотосистемы с хлорофиллами Р680 и Р700. Также на рисунке показаны переносчики, по которым происходит транспорт электронов.

Итак: обе молекулы хлорофилла двух фотосистем поглощают квант света и возбуждаются. Электрон е- (на рисунке красный) у них переходит на более высокий энергетический уровень.

Возбужденные электроны обладает очень высокой энергией, они отрываются и поступают в особую цепь переносчиков, которая находится в мембранах тилакоидов – внутренних структур хлоропластов. По рисунку видно, что из фотосистемы II от хлорофилла Р680 электрон переходит к пластохинону, а из фотосистемы I от хлорофилла Р700 – к ферредоксину. В самих молекулах хлорофилла на месте электронов после их отрыва образуются синие дырки с положительным зарядом. Что делать?

Чтобы восполнить недостачу электрона молекула хлорофилла Р680 фотосистемы II принимает электроны от воды, при этом образуются ионы водорода. Кроме того, именно за счет распада воды образуется выделяющийся в атмосферу кислород. А молекула хлорофилла Р700, как видно из рисунка, восполняет недостачу электронов через систему переносчиков от фотосистемы II.

В общем, как бы ни было сложно, именно так протекает световая фаза фотосинтеза, ее главная суть заключается в переносе электронов. Также по рисунку можно заметить, что параллельно транспорту электронов происходит перемещение ионов водорода Н+ через мембрану, и они накапливаются внутри тилакоида. Так как их там становится очень много, они перемещаются наружу с помощью особого сопрягающего фактора, который на рисунке оранжевого цвета, изображен справа и похож на гриб.

В завершении мы видим конечный этап транспорта электрона, результатом которого является образование вышеупомянутого соединения НАДН. А за счет переноса ионов Н+ синтезируется энергетическая валюта – АТФ (на рисунке видно справа).

Итак, световая фаза фотосинтеза завершена, в атмосферу выделился кислород, образовались АТФ и НАДН. А что же дальше? Где обещанная органика? А дальше наступает темновая стадия, которая заключается, главным образом, в химических процессах.

Темновая фаза фотосинтеза

Для темновой фазы фотосинтеза обязательным компонентом является углекислый газ – СО2. Поэтому растение должно постоянно его поглощать из атмосферы. Для этой цели на поверхности листа имеются специальные структуры – устьица. Когда они открываются, СО2 поступает именно внутрь листа, растворяется в воде и вступает в реакцию световой фазы фотосинтеза.

В ходе световой фазы у большинства растений СО2 связывается с пятиуглеродным органическим соединением (которое представляет собой цепочку из пяти молекул углерода), в результате чего образуются две молекулы трехуглеродного соединения (3-фосфоглицериновая кислота). Т.к. первичным результатом являются именно эти трехуглеродные соединения, растения с таким типом фотосинтеза получили название С3-растений.

Дальнейший синтез в хлоропластах происходит довольно сложно. В его конечном итоге образуется шестиуглеродное соединение, из которого в дальнейшем могут синтезироваться глюкоза, сахароза или крахмал. В виде этих органических веществ растение накапливает энергию. При этом в листе остается только небольшая их часть, которая используется для его нужд, в то время как остальные углеводы путешествуют по всему растению, поступая туда, где больше всего нужна энергия - например, в точки роста.

Фотосинтез необходим всем живым существам. Растения через фотосинтез получают пищу, а животные и люди – чистый кислород для дыхания. Но чтобы фотосинтез происходил, необходимы некоторые условия.

Главными условиями фотосинтеза являются:

  • солнечный свет;
  • углекислый газ (СО2);
  • вода (Н2О);
  • хлорофилл в листьях растений.

Условия необходимые для фотосинтеза создаются автоматически благодаря разным природным процессам и живым организмам. Ведь световая энергия попадает на Землю от Солнца, углекислый газ растения берут из атмосферы, а воду из грунта.

Солнечный свет как неотъемлемое условие для фотосинтеза

Солнечная энергия является обязательным условием не только для протекания реакций фотосинтеза, но и для жизни всех живых существ. Она попадает к нам от Солнца – единственной нашей звезды. Именно под воздействием солнечных лучей происходит световая фаза фотосинтеза, от которой напрямую зависит и темная. Энергия Солнца способна возбуждать электроны хлорофилла в составе листьев растений, благодаря чему происходит протекание остальных процессов световой фазы. Подробнее о световой фазе фотосинтеза можно почитать тут.

Важность наличия углекислого газа в атмосфере для процесса фотосинтеза

Вторым обязательным условием для протекания фотосинтеза является наличие СО2 в атмосфере Земли. Углекислый газ попадает в атмосферу в процессе дыхания людей и животных, более того, зеленые растения тоже дышат и тоже выделяют углекислый газ. СО2 является парниковым газом, его большие концентрации в атмосфере способны вызвать парниковый эффект, который особо остро начал проявляться именно в наше время. Для фотосинтеза углекислый газ необходим в темной фазе, когда молекулы СО2 постепенно проходят целый цикл превращений. В итоге, растения поглощают вредный в больших концентрациях СО2 из атмосферы и выделяют в атмосферу чистый О2, который входит в состав воздуха. Стоит заметить, что слишком малое количество СО2 в атмосфере Земли тоже проявляет вредное воздействие на земную жизнь. Положительная функция углекислого газа заключается в том, что он задерживает тепло на Земли, таким образом, на поверхности нашей планеты не бывает слишком низких температур.

Функции воды в процессе фотосинтеза

Вода – источник жизни. Она участвует практически во всех природных процессах, она находится в каждом живом организме, вода – универсальный растворитель. Так как вода – это главное вещество на Земле, конечно же, она жизненно необходима для процесса фотосинтеза. Начнем с того, что без воды растения, а значит и их листья и клетки, не способны выжить. Таким образом, условия необходимые для фотосинтеза просто не смогли бы создаться. В самих реакциях фотосинтеза вода берет участие в световой фазе. Благодаря воздействию молекулам воды создаются реакционноспособные радикалы ОН, необходимые для образования свободного кислорода.

Зеленый пигмент – хлорофилл как основной фактор фотосинтеза

Хлорофилл является главным и незаменимым условием фотосинтеза. Хлорофилл имеет сложную структуру, благодаря которой происходят начальные и основные реакции фотосинтеза. Роль хлорофилла в фотосинтезе заключается в следующем: его электроны возбуждаются при воздействии солнечного света и начинают активное движение на мембраны тилакоида. Потом, благодаря двум отрицательным зарядам на двух разных сторонах мембраны тилакоида, происходит процесс фосфорилизации, который создает главный источник энергии в темной фазе фотосинтеза – АТФ. Таким образом, хлорофилл играет решающую роль в синтезе органических веществ растений.

Сейчас, условия необходимые для фотосинтеза созданы природой автоматически в процессе эволюции и человек должен ценить это. К сожалению, сегодняшние действия человечества и его влияние на окружающий мир ведут только к уничтожению жизни на Земле. Глобальная вырубка лесов, массовое загрязнение атмосферы вредными веществами и газами, увеличение числа жителей планеты – все это ведет к тому, что многие виды фотосинтезирующих растений попросту исчезнут, из-за чего процесс фотосинтеза со временем может быть остановлен.

Фотосинтез и свободные радикалы — видео

Фотосинтез - это процесс синтеза органических веществ из неорганических за счет энергии света. В подавляющем большинстве случаев фотосинтез осуществляют растения с помощью таких клеточных органелл как хлоропласты , содержащих зеленый пигмент хлорофилл .

Если бы растения не были способны к синтезу органики, то почти всем остальным организмам на Земле нечем было бы питаться, так как животные, грибы и многие бактерии не могут синтезировать органические вещества из неорганических. Они лишь поглощают готовые, расщепляют их на более простые, из которых снова собирают сложные, но уже характерные для своего тела.

Так обстоит дело, если говорить о фотосинтезе и его роли совсем кратко. Чтобы понять фотосинтез, нужно сказать больше: какие конкретно неорганические вещества используются, как происходит синтез?

Для фотосинтеза нужны два неорганических вещества - углекислый газ (CO 2) и вода (H 2 O). Первый поглощается из воздуха надземными частями растений в основном через устьица. Вода - из почвы, откуда доставляется в фотосинтезирующие клетки проводящей системой растений. Также для фотосинтеза нужна энергия фотонов (hν), но их нельзя отнести к веществу.

В общей сложности в результате фотосинтеза образуется органическое вещество и кислород (O 2). Обычно под органическим веществом чаще всего имеют в виду глюкозу (C 6 H 12 O 6).

Органические соединения большей частью состоят из атомов углерода, водорода и кислорода. Именно они содержатся в углекислом газе и воде. Однако при фотосинтезе происходит выделение кислорода. Его атомы берутся из воды.

Кратко и обобщенно уравнение реакции фотосинтеза принято записывать так:

6CO 2 + 6H 2 O → C 6 H 12 O 6 + 6O 2

Но это уравнение не отражает сути фотосинтеза, не делает его понятным. Посмотрите, хотя уравнение сбалансированно, в нем общее количество атомов в свободном кислороде 12. Но мы сказали, что они берутся из воды, а там их только 6.

На самом деле фотосинтез протекает в две фазы. Первая называется световой , вторая - темновой . Такие названия обусловлены тем, что свет нужен только для световой фазы , темновая фаза независима от его наличия, но это не значит, что она идет в темноте. Световая фаза протекает на мембранах тилакоидов хлоропласта , темновая - в строме хлоропласта.

В световую фазу связывания CO 2 не происходит. Происходит лишь улавливание солнечной энергии хлорофилльными комплексами, запасание ее в АТФ , использование энергии на восстановление НАДФ до НАДФ*H 2 . Поток энергии от возбужденного светом хлорофилла обеспечивается электронами, передающимися по электрон-транспортной цепи ферментов, встроенных в мембраны тилакоидов.

Водород для НАДФ берется из воды, которая под действием солнечного света разлагается на атомы кислорода, протоны водорода и электроны. Этот процесс называется фотолизом . Кислород из воды для фотосинтеза не нужен. Атомы кислорода из двух молекул воды соединяются с образованием молекулярного кислорода. Уравнение реакции световой фазы фотосинтеза кратко выглядит так:

H 2 O + (АДФ+Ф) + НАДФ → АТФ + НАДФ*H 2 + ½O 2

Таким образом, выделение кислорода происходит в световую фазу фотосинтеза. Количество молекул АТФ, синтезированных из АДФ и фосфорной кислоты, приходящихся на фотолиз одной молекулы воды, может быть различным: одна или две.

Итак, из световой фазы в темновую поступают АТФ и НАДФ*H 2 . Здесь энергия первого и восстановительная сила второго тратятся на связывание углекислого газа. Этот этап фотосинтеза невозможно объяснить просто и кратко, потому что он протекает не так, что шесть молекул CO 2 объединяются с водородом, высвобождаемым из молекул НАДФ*H 2 , и образуется глюкоза:

6CO 2 + 6НАДФ*H 2 →С 6 H 12 O 6 + 6НАДФ
(реакция идет с затратой энергии АТФ, которая распадается на АДФ и фосфорную кислоту).

Приведенная реакция – лишь упрощение для облегчения понимания. На самом деле молекулы углекислого газа связываются по одной, присоединяются к уже готовому пятиуглеродному органическому веществу. Образуется неустойчивое шестиуглеродное органическое вещество, которое распадается на трехуглеродные молекулы углевода. Часть этих молекул используется на ресинтез исходного пятиуглеродного вещества для связывания CO 2 . Такой ресинтез обеспечивается циклом Кальвина . Меньшая часть молекул углевода, включающего три атома углерода, выходит из цикла. Уже из них и других веществ синтезируются все остальные органические вещества (углеводы, жиры, белки).

То есть на самом деле из темновой фазы фотосинтеза выходят трехуглеродные сахара, а не глюкоза.

Процесс преобразования лучистой энергии Солнца в химическую с использованием последней в синтезе углеводов из углекислого газа. Это единственный путь улавливания солнечной энергии и использования ее для жизни на нашей планете.

Улавливание и преобразование солнечной энергии осуществляют многообразные фотосинтезирующие организмы (фотоавтотрофы). К ним относятся многоклеточные организмы (высшие зеленые растения и низшие их формы - зеленые, бурые и красные водоросли) и одноклеточные (эвгленовые, динофлагелляты и диатомовые водоросли). Большую группу фотосинтезирующих организмов составляют прокариоты - сине-зеленые водоросли, зеленые и пурпурные бактерии. Примерно половина работы по фотосинтезу на Земле осуществляется высшими зелеными растениями, а остальная половина - главным образом одноклеточными водорослями.

Первые представления о фотосинтезе были сформированы в 17 веке. В дальнейшем, по мере появления новых данных, эти представления многократно изменялись [показать] .

Развитие представлений о фотосинтезе

Начало изучению фотосинтеза было положено в 1630 году, когда ван Гельмонт показал, что растения сами образуют органические вещества, а не получают их из почвы. Взвешивая горшок с землей, в котором росла ива, и само дерево, он показал, что в течение 5 лет масса дерева увеличилась на 74 кг, тогда как почва потеряла только 57 г. Ван Гельмонт пришел к заключению, что остальную часть пищи растение получило из воды, которой поливали дерево. Теперь мы знаем, что основным материалом для синтеза служит двуокись углерода, извлекаемая растением из воздуха.

В 1772 году Джозеф Пристли показал, что побег мяты "исправляет" воздух, "испорченный" горящей свечой. Семь лет спустя Ян Ингенхуз обнаружил, что растения могут "исправлять" плохой воздух только находясь на свету, причем способность растений "исправлять" воздух пропорциональна ясности дня и длительности пребывания растений на солнце. В темноте же растения выделяют воздух, "вредный для животных".

Следующей важной ступенью в развитии знаний о фотосинтезе были опыты Соссюра, проведенные в 1804 году. Взвешивая воздух и растения до фотосинтеза и после, Соссюр установил, что увеличение сухой массы растения превышало массу поглощенной им из воздуха углекислоты. Соссюр пришел к выводу, что другим веществом, участвовавшим в увеличении массы, была вода. Таким образом, 160 лет назад процесс фотосинтеза представляли себе следующим образом:

H 2 O + CO 2 + hv -> C 6 H 12 O 6 + O 2

Вода + Углекислота + Солнечная энергия ----> Органическое вещество + Кислород

Ингенхуз предположил, что роль света в фотосинтезе заключается в расщеплении углекислоты; при этом происходит выделение кислорода, а освободившийся "углерод" используется для построения растительных тканей. На этом основании живые организмы были разделены на зеленые растения, которые могут использовать солнечную энергию для "ассимиляции" углекислоты, и остальные организмы, не содержащие хлорофилла, которые не могут использовать энергию света и не способны ассимилировать CO 2 .

Этот принцип разделения живого мира был нарушен, когда С. Н. Виноградский в 1887 году открыл хемосинтезирующие бактерии - бесхлорофильные организмы, способные ассимилировать (т. е. превращать в органические соединения) углекислоту в темноте. Он был нарушен также, когда в 1883 году Энгельман открыл пурпурные бактерии, осуществляющие своеобразный фотосинтез, не сопровождающийся выделением кислорода. В свое время этот факт не был оценен в должной мере; между тем открытие хемосинтезирующих бактерий, ассимилирующих углекислоту в темноте, показывает, что ассимиляцию углекислоты нельзя считать специфической особенностью одного лишь фотосинтеза.

После 1940 года благодаря применению меченого углерода было установлено, что все клетки - растительные, бактериальные и животные - способны ассимилировать углекислоту, т. е. включать ее в состав молекул органических веществ; различны лишь источники, из которых они черпают необходимую для этого энергию.

Другой крупный вклад в изучение процесса фотосинтеза внес в 1905 году Блэкман, который обнаружил, что фотосинтез состоит из двух последовательных реакций: быстрой световой реакции и ряда более медленных, не зависящих от света этапов, названных им темповой реакцией. Используя свет высокой интенсивности, Блэкман показал, что фотосинтез протекает с одинаковой скоростью как при прерывистом освещении с продолжительностью вспышек всего в долю секунды, так и при непрерывном освещении, несмотря на то что в первом случае фотосинтетическая система получает вдвое меньше энергии. Интенсивность фотосинтеза снижалась только при значительном увеличении темнового периода. В дальнейших исследованиях было установлено, что скорость темновой реакции значительно возрастает с повышением температуры.

Следующая гипотеза относительно химической основы фотосинтеза была выдвинута ван Нилем, который в 1931 году экспериментально показал, что у бактерий фотосинтез может происходить в анаэробных условиях, не сопровождаясь выделением кислорода. Ван Ниль высказал предположение, что в принципе процесс фотосинтеза сходен у бактерий и у зеленых растений. У последних световая энергия используется для фотолиза воды (Н 2 0) с образованием восстановителя (Н), определенным путем участвующего в ассимиляции углекислоты, и окислителя (ОН) - гипотетического предшественника молекулярного кислорода. У бактерий фотосинтез протекает в общем так же, но донором водорода служит Н 2 S или молекулярный водород, и поэтому выделения кислорода не происходит.

Современные представления о фотосинтезе

По современным представлениям сущность фотосинтеза заключается в превращении лучистой энергии солнечного света в химическую энергию в форме АТФ и восстановленного никотинамидадениндинуклеотидфосфата (НАДФ · Н).

В настоящее время принято считать, что процесс фотосинтеза складывается из двух стадий, в которых активное участие принимают фотосинтезирующие структуры [показать] и светочувствительные пигменты клетки .

Фотосинтезирующие структуры

У бактерий фотосинтезирующие структуры представлены в виде впячивания клеточной мембраны, образуя пластинчатые органоиды мезосомы. Изолированные мезосомы, получаемые при разрушении бактерий, называются хроматофорами, в них сосредоточен светочувствительный аппарат.

У эукариотов фотосинтетический аппарат расположен в специальных внутриклеточных органоидах - хлоропластах, содержащих зеленый пигмент хлорофилл, который придает растению зеленую окраску и играет важнейшую роль в фотосинтезе, улавливая энергию солнечного света. Хлоропласты, подобно митохондриям, содержат также ДНК, РНК и аппарат для синтеза белка, т. е. обладают потенциальной способностью к самовоспроизведению. По размерам хлоропласты в несколько раз больше митохондрий. Число хлоропластов колеблется от одного у водорослей до 40 на клетку у высших растений.


В клетках зеленых растений помимо хлоропластов имеются и митохондрии, которые используются для образования энергии в ночное время за счет дыхания, как в гетеротрофных клетках.

Хлоропласты имеют шаровидную или уплощенную форму. Они окружены двумя мембранами - наружной и внутренней (рис. 1). Внутренняя мембрана укладывается в виде стопок уплощенных пузырьковидных дисков. Эта стопка называется граной.

Каждая грана состоит из отдельных слоев, расположенных наподобие столбиков монет. Слои белковых молекул чередуются со слоями, содержащими хлорофилл, каротины и другие пигменты, а также особые формы липидов (содержащих галактозу или серу, но только одну жирную кислоту). Эти поверхностно-активные липиды, по-видимому, адсорбированы между отдельными слоями молекул и служат для стабилизации структуры, состоящей из чередующихся слоев белка и пигментов. Такое слоистое (ламеллярное) строение граны, вероятнее всего облегчает перенос энергии в процессе фотосинтеза от одной молекулы к близлежащей.

В водорослях находится не более одной граны в каждом хлоропласте, а в высших растениях - до 50 гран, которые соединены между собой мембранными перемычками. Водная среда между гранами - это строма хлоропласта, которая содержит ферменты, осуществляющие "темновые реакции"

Пузырьковидные структуры, из которых состоит грана, называются тилактоидами. В гране от 10 до 20 тилактоидов.

Элементарная структурная и функциональная единица фотосинтеза мембран тилактоидов, содержащая необходимые светоулавливающие пигменты и и компоненты аппарата трансформации энергии, называется квантосомой, состоящей примерно из 230 молекул хлорофилла. Эта частица имеет массу порядка 2 х 10 6 дальтон и размеры около 17,5 нм.

Стадии фотосинтеза

Световая стадия (или энергетическая)

Темновая стадия (или метаболическая)

Место протекание реакции

В квантосомах мембран тилактоидов, протекает на свету.

Осуществляется вне тилактоидов, в водной среде стромы.

Начальные продукты

Энергия света, вода (Н 2 О), АДФ, хлорофилл

СО 2 , рибулозодифосфат, АТФ, НАДФН 2

Суть процесса

Фотолиз воды, фосфорилирование

В световой стадии фотосинтеза энергия света трансформируется в химическую энергию АТФ, а бедные энергией электроны воды переходят в богатые энергией электроны НАДФ· Н 2 . Побочным веществом, образующимся в ходе световой стадии, является кислород. Реакции световой стадии получили название "световых реакций".

Карбоксилирование, гидрирование, дефосфорилирование

В темновой стадии фотосинтеза протекают "темновые реакции" при которых наблюдается восстановительный синтез глюкозы из CO 2 . Без энергии световой стадии темновая стадия невозможна.

Конечные продукты

О 2 , АТФ, НАДФН 2

Богатые энергией продукты световой реакции - АТФ и НАДФ· Н 2 далее используются в темновой стадии фотосинтеза.

Взаимосвязь между световой и темновой стадиями можно выразить схемой

Процесс фотосинтеза эндергонический, т.е. сопровождается увеличением свободной энергии, поэтому требует значительного количества энергии, подведенной извне. Суммарное уравнение фотосинтеза:

6СО 2 + 12Н 2 О--->С 6 Н 12 О 62 + 6Н 2 О + 6О 2 + 2861 кДж/моль.

Наземные растения поглощают необходимую для процесса фотосинтеза воду через корни, а водные растения получают ее путем диффузии из окружающей среды. Необходимая для фотосинтеза углекислота диффундирует в растение через мелкие отверстия на поверхности листьев - устьица. Поскольку углекислота расходуется в процессе фотосинтеза, ее концентрация в клетке обычно несколько ниже, чем в атмосфере. Освобождающийся в процессе фотосинтеза кислород диффундирует наружу из клетки, а затем и из растения - через устьица. Образующиеся при фотосинтезе сахара также диффундируют в те части растения, где их концентрация ниже.

Для осуществления фотосинтеза растениям необходимо очень много воздуха, так как он содержит всего 0,03% углекислоты. Следовательно, из 10 000 м 3 воздуха можно получить 3 м 3 углекислоты, из которой в процессе фотосинтеза образуется около 110 г глюкозы. Обычно растения лучше растут при более высоком содержании в воздухе углекислоты. Поэтому в некоторых теплицах содержание CO 2 в воздухе доводят до 1-5%.

Механизм световой (фотохимической) стадии фотосинтеза

В реализации фотохимической функции фотосинтеза принимают участие солнечная энергия и различные пигменты: зеленые - хлорофиллы а и b, желтые - каротиноиды и красные или синие - фикобилины. Фотохимически активен среди этого комплекса пигментов только хлорофилл а. Остальные пигменты играют вспомогательную роль, являясь лишь собирателями световых квантов (своеобразные светособирающие линзы) и проводниками их к фотохимическому центру.

На основании способности хлорофилла эффективно поглощать солнечную энергию определенной длины волны в мембранах тилактоидов были выделены функциональные фотохимические центры или фотосистемы (рис. 3):

  • фотосистемa I (хлорофилл а ) - содержит пигмент 700 (Р 700) поглощающий свет с длиной волны около 700 нм, играет основную роль в образовании продуктов световой стадии фотосинтеза: АТФ и НАДФ · Н 2
  • фотосистема II (хлорофилл b ) - содержит пигмент 680 (Р 680), поглощающий свет с длиной волны 680 нм, играет вспомогательную роль восполняя за счет фотолиза воды утраченные фотосистемой I электроны

На 300-400 молекул светособирающих пигментов в фотосистемах I и II приходится только одна молекула фотохимически активного пигмента - хлорофилла а.

Поглощенный растением световой квант

  • переводит пигмент Р 700 из основного состояния в возбужденное - Р * 700 , в котором он легко теряет электрон с образованием положительной электронной дырки в виде Р 700 + по схеме:

    Р 700 ---> Р * 700 ---> Р + 700 + е -

    После чего молекула пигмента, потерявшая электрон, может служить акцептором электрона (способна принять электрон) и переходить в восстановленную форму

  • вызывает разложение (фотоокисление) воды в фотохимическом центре Р 680 фотосистемы II по схеме

    Н 2 О ---> 2Н + + 2е - + 1/2O 2

    Фотолиз воды называется реакцией Хилла. Электроны, образующиеся при разложении воды, первоначально акцептируются веществом, обозначаемым Q (иногда его называют цитохромом С 550 пo максимуму поглощения, хотя оно не является цитохромом). Затем от вещества Q через цепь переносчиков, похожую по составу на митохондриальную, электроны поставляются в фотосистему I для заполнения электронной дырки, образовавшейся в результате поглощения системой световых квантов, и восстановления пигмента Р + 700

Если такая молекула просто получит назад тот же электрон, то произойдет выделение световой энергии в виде тепла и флуоресценции (этим обусловлена флуоресценция чистого хлорофилла). Однако, в большинстве случаев, освободившийся отрицательно заряженный электрон акцептируется специальными железосерными белками (FеS-центр), а затем

  1. или транспортируется по одной из цепей переносчиков обратно к Р + 700 , заполняя электронную дырку
  2. или по другой цепи переносчиков через ферредоксин и флавопротеид к постоянному акцептору - НАДФ · Н 2

В первом случае происходит замкнутый циклический транспорт электрона, а во втором - нециклический.

Оба процесса катализируются одной и той же цепью переносчиков электронов. Однако при циклическом фотофосфорилировании электроны возвращаются от хлорофилла а снова к хлорофиллу а , тогда как при нециклическом фотофосфорилировании электроны переходят от хлорофилла b к хлорофиллу а .

Циклическое (фотосинтетическое) фосфорилирование Нециклическое фосфорилирование

В результате циклического фосфорилирования происходит образование молекул АТФ. Процесс связан с возвращением через ряд последовательных этапов возбужденных электронов на Р 700 . Возвращение возбужденных электронов на Р 700 приводит к высвобождению энергии (при переходе с высокого на низкий энергетический уровень), которая, при участии фосфорилирующей ферментной системы, аккумулируется в фосфатных связях АТФ, а не рассеивается в виде флуоресценции и тепла (рис.4.). Этот процесс называется фотосинтетическим фосфорилированием (в отличие от окислительного фосфорилирования, осуществляемого митохондриями);

Фотосинтетическое фосфорилирование - первичная реакция фотосинтеза - механизм образования химической энергии (синтеза АТФ из АДФ и неорганического фосфата) на мембране тилактоидов хлоропластов с использованием энергии солнечного света. Необходима для темновой реакции ассимиляции СО 2

В результате нециклического фосфорилирования происходит восстановление НАДФ + с образование НАДФ · Н. Процесс связан с передачей электрона ферредоксину, его восстановлением и дальнейшим переходом его к НАДФ + с последующим восстановление его до НАДФ · Н

В тилактоидах идут оба процесса, хотя второй более сложный. Он сопряжен (взаимосвязан) с работой фотосистемы II.

Таким образом, утраченные Р 700 электроны восполняются за счет электронов воды, разлагаемой под действием света в фотосистеме II.

а + в основное состояние, образуются, по-видимому, при возбуждении хлорофилла b . Эти высокоэнергетические электроны переходят к ферредоксину и затем через флавопротеин и цитохромы - к хлорофиллу а . На последнем этапе происходит фосфорилирование АДФ до АТФ (рис. 5).

Электроны, необходимые для возвращения хлорофилла в его основное состояние, поставляются, вероятно, ионами ОН - , образующимися при диссоциации воды. Некоторая часть молекул воды диссоциирует на ионы Н + и ОН - . В результате потери электронов ионы ОН - превращаются в радикалы (ОН), которые в дальнейшем дают молекулы воды и газообразного кислорода (рис. 6).

Этот аспект теории подтверждается результатами опытов с водой и CO 2 , меченными 18 0 [показать] .

Согласно этим результатам, весь газообразный кислород, выделяющийся при фотосинтезе, происходит из воды, а не из СО 2 . Реакции расщепления воды до сих пор еще подробно не изучены. Ясно, однако, что осуществление всех последовательных реакций нециклического фотофосфорилирования (рис. 5), в том числе возбуждение одной молекулы хлорофилла а и одной молекулы хлорофилла b , должно приводить к образованию одной молекулы НАДФ · Н, двух или более молекул АТФ из АДФ и Ф н и к выделению одного атома кислорода. Для этого необходимо по крайней мере четыре кванта света - по два для каждой молекулы хлорофилла.

Нециклический поток электронов от Н 2 О к НАДФ · Н 2 , происходящий при взаимодействии двух фотосистем и связывающих их электронно-транспортных цепей, наблюдается вопреки значениям редокс-потенциалов: Е° для 1/2O 2 /Н 2 О = +0,81 В, а Е° для НАДФ/НАДФ · Н = -0,32 В. Энергия света обращает поток электронов "вспять". Существенно то, что при переносе от фотосистемы II к фотосистеме I часть энергии электронов аккумулируется в виде протонного потенциала на мембране тилактоидов, а затем в энергию АТФ.

Механизм образования протонного потенциала в цепи переноса электронов и его использование на образование АТФ в хлоропластах сходен с таковым в митохондриях. Однако в механизме фотофосфорилирования имеются некоторые особенности. Тилактоиды представляют собой как бы вывернутые наизнанку митохондрии, поэтому направление переноса электронов и протонов через мембрану противоположно направлению его в митохондриальной мембране (рис.6). Электроны движутся к внешней стороне, а протоны концентрируются внутри тилактоидного матрикса. Матрикс заряжается положительно, а внешняя мембрана тилактоида - отрицательно, т. е. направление протонного градиента противоположно направлению его в митохондриях.

Другой особенностью является значительно большая доля рН в протонном потенциале по сравнению с митохондриями. Тилактоидный матрикс сильно закисляется, поэтому Δ рН может достигать 0,1-0,2 В, в то время как Δ Ψ составляет около 0,1 В. Общее значение Δ μ H+ > 0,25 В.

Н + -АТФ-синтетаза, обозначаемая в хлоропластах как комплекс "СF 1 +F 0 ", ориентирована тоже в противоположном направлении. Головка ее (F 1) смотрит наружу, в сторону стромы хлоропласта. Протоны выталкиваются через СF 0 +F 1 из матрикса наружу, и в активном центре F 1 образуется АТФ за счет энергии протонного потенциала.

В отличие от митохондриальной цепи в тилактоидной имеется, по-видимому, только два участка сопряжения, поэтому на синтез одной молекулы АТФ требуется вместо двух три протона, т. е. соотношение 3 Н + /1 моль АТФ.

Итак, на первой стадии фотосинтеза, во время световых реакций, в строме хлоропласта образуются АТФ и НАДФ · Н - продукты, необходимые для осуществления темновых реакций.

Механизм темновой стадии фотосинтеза

Темновые реакции фотосинтеза - это процесс включения углекислоты в органические вещества с образованием углеводов (фотосинтез глюкозы из СО 2). Реакции протекают в строме хлоропласта при участии продуктов световой стадии фотосинтеза - АТФ и НАДФ · Н2.

Ассимиляция диоксида углерода (фотохимическое карбоксилирование) представляет собой циклический процесс, который называется также пентозофосфатным фотосинтетическим циклом или циклом Кальвина (рис. 7). В нем можно выделить три основные фазы:

  • карбоксилирование (фиксация СО 2 рибулозодифосфатом)
  • восстановление (образование триозофосфатов при восстановлении 3-фосфоглицерата)
  • регенерация рибулозодифосфата

Рибулозо-5-фосфат (сахар, содержащий 5 атомов углерода, с фосфатным остатком у углерода в положении 5) подвергается фосфорилированию за счет АТФ, что приводит к образованию рибулозодифосфата. Это последнее вещество карбоксилируется путем присоединения СО 2 , по-видимому, до промежуточного шестиуглеродного продукта, который, однако, немедленно расщепляется с присоединением молекулы воды, образуя две молекулы фосфоглицериновой кислоты. Затем фосфоглицериновая кислота восстанавливается в ходе ферментативной реакции, для осуществления которой необходимо присутствие АТФ и НАДФ · Н с образованием фосфоглицеринового альдегида (трехуглеродный сахар - триоза). В результате конденсации двух таких триоз образуется молекула гексозы, которая может включаться в молекулу крахмала и таким образом откладываться про запас.

Для завершения этой фазы цикла в процессе фотосинтеза поглощается 1 молекула С0 2 и используются 3 молекулы АТФ и 4 атома Н (присоединенных к 2 молекулам НАД · Н). Из гексозофосфата путем определенных реакций пентозофосфатного цикла (рис. 8) регенерирует рибулозофосфат, который снова может присоединить к себе другую молекулу углекислоты.

Ни одну из описанных реакций - карбоксилирование, восстановление или регенерацию - нельзя считать специфичной только для фотосинтезирующей клетки. Единственное обнаруженное у них отличие заключается в том, что для реакции восстановления, в течение которой фосфоглицериновая кислота превращается в фосфоглицериновый альдегид, необходим НАДФ · Н, а не НАД · Н, как обычно.

Фиксация СО 2 рибулозодифосфатом катализируется ферментом рибулозодифосфаткарбоксилазой: Рибулозодифосфат + СО 2 --> 3-Фосфоглицерат Далее 3-фосфоглицерат восстанавливается с помощью НАДФ · Н 2 и АТФ до глицеральдегид-3-фосфата. Эта реакция катализируется ферментом - глицеральдегид-3-фосфат-дегидрогеназой. Глицеральдегид-3-фосфат легко изомеризуется в дигидроксиацетонфосфат. Оба триозофосфата используются в образовании фруктозобисфосфата (обратная реакция, катализируемая фруктозо-бисфосфат-альдолазой). Часть молекул образовавшегося фруктозобисфосфата участвует вместе с триозофосфатами в регенерации рибулозодифосфата (замыкают цикл), а другая часть используется для запасания углеводов в фотосинтезирующих клетках, как показано на схеме.

Подсчитано, что для синтеза одной молекулы глюкозы из СО 2 в цикле Кальвина требуется 12 НАДФ · Н + Н + и 18 АТФ (12 молекул АТФ расходуются на восстановление 3-фосфоглицерата, а 6 молекул - в реакциях регенерации рибулозодифосфата). Минимальное соотношение - 3 АТФ: 2 НАДФ · Н 2 .

Можно заметить общность принципов, лежащих в основе фотосинтетического и окислительного фосфорилирования, причем фотофосфорилирование представляет собой как бы обращенное окислительное фосфорилирование:

Энергия света является движущей силой фосфорилирования и синтеза органических веществ (S-Н 2) при фотосинтезе и, наоборот, энергия окисления органических веществ - при окислительном фосфорилировании. Поэтому именно растения обеспечивают жизнь животным и другим гетеротрофным организмам:

Углеводы, образующиеся при фотосинтезе, служат для построения углеродных скелетов многочисленных органических веществ растений. Азоторганические вещества усваиваются фотосинтезирующими организмами путем восстановления неорганических нитратов или атмосферного азота, а сера - восстановлением сульфатов до сульфгидрильных групп аминокислот. Фотосинтез в конечном итоге обеспечивает построение не только обязательных для жизни белков, нуклеиновых кислот, углеводов, липидов, кофакторов, но и многочисленных продуктов вторичного синтеза, являющихся ценными лекарственными веществами (алкалоиды, флавоноиды, полифенолы, терпены, стероиды, органические кислоты и т.д.).

Бесхлорофильный фотосинтез

Бесхлорофильный фотосинтез обнаружен у солелюбивых бактерий, имеющих фиолетовый светочувствительный пигмент. Этим пигментом оказался белок бактериородопсин, содержащий, подобно зрительному пурпуру сетчатки - родопсину, производное витамина А - ретиналь. Бактериородопсин, встроенный в мембрану солелюбивных бактерий, образует на этой мембране в ответ на поглощение ретиналем света протонный потенциал, преобразующийся в АТФ. Таким образом, бактериородопсин является бесхлорофильным преобразователем энергии света.

Фотосинтез и внешняя среда

Фотосинтез возможен только при наличии света, воды и диоксида углерода. КПД фотосинтеза не более 20% у культурных видов растений, а обычно он не превышает 6-7%. В атмосфере примерно 0,03% (об.) СО 2 , при повышении его содержания до 0,1% интенсивность фотосинтеза и продуктивность растений возрастают, поэтому целесообразно подкармливать растения гидрокарбонатами. Однако содержание СО 2 в воздухе выше 1,0% оказывает вредное действие на фотосинтез. За год только наземные растения усваивают 3% всего СО 2 атмосферы Земли, т. е. около 20 млрд. т. В составе синтезируемых из СО 2 углеводов аккумулируется до 4 · 10 18 кДж энергии света. Это соответствует мощности электростанции в 40 млрд кВт. Побочный продукт фотосинтеза - кислород - жизненно необходим для высших организмов и аэробных микроорганизмов. Сохранить растительный покров - значит сохранить жизнь на Земле.

Эффективность фотосинтеза

Эффективность фотосинтеза с точки зрения производства биомассы можно оценить через долю общей солнечной радиации, попадающей на определенную площадь за определенное время, которая запасается в органических веществах урожая. Продуктивность системы можно оценить по количеству органического сухого вещества, получаемого с единицы площади за год, и выразить в единицах массы (кг) или энергии (мДж) продукции, полученной с гектара за год.

Выход биомассы зависит, таким образом, от площади коллектора солнечной энергии (листьев), функционирующих в течение года, и числа дней в году с такими условиями освещенности, когда возможен фотосинтез с максимальной скоростью, что определяет эффективность всего процесса. Результаты определения доли солнечной радиации (в %), доступной растениям (фотосинтетически активной радиации, ФАР), и знание основных фотохимических и биохимических процессов и их термодинамической, эффективности позволяют рассчитать вероятные предельные скорости образования органических веществ в пересчете на углеводы.

Растения используют свет с длиной волны от 400 до 700 нм, т. е. на долю фотосинтетически активной радиации приходится 50% всего солнечного света. Это соответствует интенсивности на поверхности Земли 800-1000 Вт/м 2 за обычный солнечный день (в среднем). Усредненная максимальная эффективность превращения энергии при фотосинтезе на практике составляет 5-6%. Эти оценки получены на основе изучения процесса связывания СО 2 , а также сопутствующих физиологических и физических потерь. Одному молю связанного СО 2 в форме углевода соответствует энергия 0,47 МДж, а энергия моля квантов красного света с длиной волны 680 нм (наиболее бедный энергией свет, используемый в фотосинтезе) составляет 0,176 МДж. Таким образом, минимальное число молей квантов красного света, необходимое для связывания 1 моля СО 2 , составляет 0,47:0,176 = 2,7. Однако, поскольку перенос четырех электронов от воды для фиксации одной молекулы СО 2 требует не менее восьми квантов света, теоретическая эффективность связывания равна 2,7:8 = 33%. Эти расчеты сделаны для красного света; ясно, что для белого света эта величина будет соответственно ниже.

В наилучших полевых условиях эффективность фиксации в растениях достигает 3%, однако это возможно лишь в короткие периоды роста и, если пересчитать ее на весь год, то она будет где-то между 1 и 3%.

На практике в среднем за год эффективность фотосинтетического преобразования энергии в зонах с умеренным климатом составляет обычно 0,5-1,3%, а для субтропических культур - 0,5-2,5%. Выход продукта, который можно ожидать при определенном уровне интенсивности солнечного света и разной эффективности фотосинтеза, легко оценить из графиков, приведенных на рис. 9.

Значение фотосинтеза

  • Процесс фотосинтеза является основой питания всех живых существ, а также снабжает человечество топливом, волокнами и бесчисленными полезными химическими соединениями.
  • Из диоксида углерода и воды, связанных из воздуха в ходе фотосинтеза, образуется около 90-95% сухого веса урожая.
  • Человек использует около 7% продуктов фотосинтеза в пищу, в качестве корма для животных, в виде топлива и строительных материалов

Что же такое - этот фотосинтез

Фотосинтез – это переработка неорганических веществ в органические при помощи специальных пигментов. Благодаря этому явлению растения питаются и снабжают планету кислородом. Проще всего понять, что такое фотосинтез , при помощи данной картинки:

  • Растения при помощи пигмента под названием хлорофилл поглощают воду и углекислый газ (неорганические вещества).
  • На растения оказывают воздействие лучи солнца.
  • Под воздействием этих лучей из воды и углекислого газа синтезируются кислород и глюкоза.
  • Кислородом дышат другие живые существа. Выделяют углекислый газ - и круг замыкается, все начинается снова.

Бывают ли растения без хлорофилла в листьях

Да, такое случается. Все организмы подвержены изменчивости . Это означает, что в них могут происходить мутации. Иногда они помогают растениям лучше выживать, но иногда все происходит наоборот.

Одна из таких мутаций у растений как раз и выражается в отсутствии хлорофилла в листьях. Поскольку именно данный пигмент отвечает за зеленый цвет листвы, у данных растений она будет белой.


Как растения-альбиносы питаются

Самостоятельно они питаться не могут, поэтому, в большинстве своем, они умирают. Но есть и исключения.

Одно из них – это секвоя-альбинос . Красивая, правда? Только вот некоторым растениям она не кажется такой уж привлекательной.


Ее можно назвать настоящим вампиром в мире растений : она имеет белый окрас, а питается за счет других растений, «присасываясь» своими корнями к корневой системе других растений, отнимая у них часть пищи.

Нет, фотосинтезировать могут водоросли, бактерии и даже животные.

Примером животного , которое способно к фотосинтезу, является морской слизень Elysia chlorotica.

Он забирает хлоропласты у водорослей , встраивая их в свою пищеварительную систему . Затем, в результате фотосинтеза, слизень производит сахар, которым впоследствии и питается. Он и внешне немного напоминает листочек растения - такой же зеленый.


Растения в доме

Если вы хотите, чтобы дома было больше кислорода – то они точно не повредят .

Вот пятерка комнатных цветов , которые лучше всего справятся с этой задачей:


Именно ее я купила на свой подоконник, теперь она радует глаза. Может, мне это только кажется, но дышится теперь и вправду легче.

Полезно9 9 Не очень

Друзья, вы часто спрашиваете, поэтому напоминаем! 😉

Авиабилеты - сравнить цены от всех авиакомпаний и агентств можно !

Отели - не забываем проверять цены от сайтов бронирования! Не переплачивайте. Это !

Аренда авто - тоже агрегация цен от всех прокатчиков, все в одном месте, идем !

Фотосинтез отложился у меня в голове основательно. Проходили мы его в шестом классе. Я, как физик и программист, отказывающийся учить биологию, просто спал на уроках. Учитель у меня была очень терпеливой дамой, но тогда ее терпение не выдержало. Она вызвала меня к доске и я под смех и улюлюканье класса пытался сообразить, что это за зверь такой "фотосинтез". Неприятный опыт отложился у меня в голове и теперь рассказать о нем я могу в любой момент, хоть среди ночи меня разбуди.


Что это за зверь такой - фотосинтез

Фотосинтез - процесс образования органических веществ из неорганических веществ растением или простейшим . Неорганические вещества: вода (HOH), углекислый газ (CO2); органические: глюкоза (C6H12O6) . Также в данном процессе образуется достаточно много энергии, которая потом тратится растением на продолжение жизни (на внутренние процессы и движение).

Механизм

Механизм фотосинтеза не очень сложен. Растение поглощает из атмосферы углекислый газ , затем использует воду , которую корни абсорбировали под землей и с помощью хлорофилла и света начинает реакцию, которая проходит в основной ткани. В ходе этой реакции шесть молекул углекислого газа объединяются с шестью молекулами воды и образуется шесть молекул глюкозы и столько же кислорода. Кислород позже выделяется устьицами листа в атмосферу. Важно учитывать, что катализатором в такой реакции должен служить солнечный свет (волны ультрафиолетового спектра).

Есть небольшой нюанс, у более простых организмов можно наблюдать фотосинтез без участия хлорофилла, это уже тема старшей школы/ВУЗ-а, поэтому не думаю, что стоит ее детально расписывать. Школьнику достаточно знать, что это дает большой проигрыш в эффективности, то есть, получается меньше энергии и органических веществ.


Те, кто фотосинтезирует

  • Все зеленые растения:
    • Высшие растения.
    • Различные зеленые водоросли.
  • Некоторые животные:
    • Эвглена зеленая (тут может быть ошибка, ибо даже когда я учился, велись споры по поводу того, к животным или растениям ее относить),
    • Восточная изумрудная элизия.

Полезно1 1 Не очень

Комментарии0

Однажды ко мне в комнату в общежитии подселили биолога, который был помешан на учебе. За неделю проживания в нашей комнате, он заложил весь подоконник растениями и без устали твердил, что растения нужны ему для дипломной работы. Он изучал, как комнатные растения перерабатывают энергию солнца. Как-то он спросил меня, знаю ли я, что такое фотосинтез, и я ответил то, что изучал в школе. На что он мне ответил, что химики ничего не знают, и мои знания приравниваются к знаниям грудного ребенка. Таким образом, с самого утра и до глубокой ночи, он постоянно рассказывал мне про растения и фотосинтез, поэтому я идеально запомнил весь этот процесс.

Фотосинтез - что это

Как я и ответил биологу, фотосинтез - это процесс превращения воды и углекислого газа в органические соединения под действием солнечного света . Фотосинтез - единственный в биосфере процесс, при помощи которого усваивается энергия солнца растениями и другими организмами. Общее уравнение фотосинтеза изображается как: 6СО2 + 6Н2О = С6Н12О6 + 6О2 - углекислый газ и вода под действием ультрафиолетового света превращаются в гексозу, также выделяется побочный продукт синтеза - кислород , который поддерживает всю жизнь на планете. Существует несколько типов фотосинтеза:

  1. Бесхлорофилльный фотосинтез - это, когда не происходит образования соединений необходимых для поглощения углекислого газа, а осуществляется исключительно запас солнечной энергии в форме АТФ.
  2. Хлорофилльный фотосинтез - отличается от бесхлорофилльного значительно большей эффективностью запаса энергии.

Есть два типа хлорофилльного фотосинтеза: аноксигенный и оксигенный. Аноксигенный - это бескислородный фотосинтез, он происходит без выделения кислорода. Оксигенный - это кислородный фотосинтез, который сопровождается выделением кислорода в качестве побочного продукта.

Значение фотосинтеза

Именно благодаря фотосинтезу стала возможной эволюция бактерий в более сложные организмы , таким образом солнечная энергия стала одним из источников питания для бесчисленного количества организмов. Также, благодаря фотосинтезу, выделяется кислород и перерабатывается углекислый газ. С помощью фотосинтеза на ранних этапах существования Земли в атмосфере накопилось огромное количество кислорода, что в дальнейшем сыграло роль в образовании нашей атмосферы и жизни на планете.

Полезно1 1 Не очень

Комментарии0

Наверное каждый, кто хоть раз бывал на даче, сталкивался с тем, что, подняв оставленные с прошлого года коврик или доску во дворе, можно увидеть под ними совсем хилую траву почти белого цвета. И мой пятилетний племянник, увидевший такое в первый раз, учинил мне настоящий допрос.) Вот, что я ему рассказала.


Коротко о фотосинтезе

Растения являются обладателями зеленого цвета благодаря наличию вещества, которое называется хлорофилл. Оно содержится в органеллах (можно провести аналогию с человеческими органами), называющихся хлоропластами. Они устроены так, что при попадании солнечных лучей сразу же начинают их поглощать и перерабатывать в необходимую для жизни растения энергию. Это сложный химический процесс, в результате которого выделяется кислород. При этом остается неиспользованной зеленая часть цветового спектра солнечного луча. Поэтому листик или трава становятся зелеными. А все это вместе называется фотосинтезом.


Нужен ли хлорофилл человеку

Если провести параллель с человеческим организмом, то хлорофилл больше всего похож, как по выполняемым функциям, так и по химической формуле, на гемоглобин. Но ученые так и не сумели доказать, может ли он усваиваться людьми. Поэтому чаще всего хлорофилл используется в качестве натурального и безвредного пищевого красителя зеленого цвета.


Вот еще что интересного я нашла об этом процессе:

  • главным поставщиком кислорода в результате фотосинтеза является морской фитопланктон;
  • некоторые глубоководные бактерии настолько светочувствительны, что для запуска процесса фотосинтеза им достаточно света от горячих источников;
  • при чрезмерном солнечном освещении способность растительных клеток к фотосинтезу может уменьшаться;
  • листья фиолетового и красного цветов насыщены специальными пигментами, которые не позволяют подавить процесс фотосинтеза при избытке освещения;
  • некоторые виды бактерий не выделяют кислород при фотосинтезе.

А еще хлорофилл не является обязательным для фотосинтеза. В некоторых организмах его роль выполняет «родственник» витамина А, под названием ретиналь.

Полезно0 0 Не очень

Комментарии0

Когда я голоден, первым делом лезу в холодильник или же спускаюсь за продуктами в кладовую. Но что могут делать растения, когда они голодают? Со школьных времен я помню, как учительница на примере цветов, стоящих в классе, рассказывала нам, что растениям нужен солнечный свет, вода и почва, чтобы расти. Но как они получают свою пищу? Они делают это сами!


Ценность фотосинтеза

Невозможно переоценить важность фотосинтеза для поддержания жизни на Земле. Если бы он прекратился, то:

  • на Земле вскоре стало бы мало пищи или других органических веществ;
  • со временем атмосфера нашей планеты стала бы почти лишенной газообразного кислорода;
  • планету населяли бы только анаэробные бактерии, живущие в бескислородной среде.

Так же как люди питаются пищей, так и растения должны поглощать газы, чтобы жить. Многие люди считают, что они «кормят» растение, когда зарывают его в почву, поливают или выставляют на солнце, но ни один из этих источников не является пищей для них.


Благодаря поглощению световой энергии и преобразованию ее в кислород и минералы любое растение может существовать. Этот процесс называется фотосинтезом и выполняется всеми растениями, водорослями и даже некоторыми микроорганизмами.

Для фотосинтеза нашим «зеленым друзьям» необходимо три вещи:

  • углекислый газ;
  • вода;
  • солнечный свет.

Фотосинтез и экосистема

С помощью углекислого газа и воды, гороховый стручок использует энергию от солнечного света для создания молекул сахара. Когда кролик съел стручок гороха, он косвенно получил энергию от солнечного света, который хранился в молекулах сахара цветка.


Энергия, вырабатываемая в процессе фотосинтеза, отвечает за ископаемое топливо, питающее промышленность. В прошлые века зеленые растения и мелкие организмы росли быстрее, чем они потреблялись, сейчас ситуация в корне изменилась. К сожалению, современная цивилизация использует в течение нескольких столетий избыток фотосинтетического производства, накопленный за миллионы лет, и как следствие углекислый газ возобновляется особо большими темпами.

Полезно0 0 Не очень

Комментарии0

Энергия правит миром. Энергетическая ценность, килокалории - знакомые слова, да? Калории в нашем обществе, озабоченном похудением до несуществующего идеала, чаще ассоциируются с чем-то плохим. Вот мои подруги вечно ругают себя за то, что едят. И что-то там говорят мне про "плохую еду". Плохая еда - это та, которая испортилась или у вас нее аллергия. Всё.

Не буду вдаваться в подробности диетологии, но без калорий (или урезая их до абсолютного минимума) просто невозможно жить, ведь они дают нам энергию для работы всего организма. Нет еды - нет жизни.

Вот и у растений то же самое. Им для роста и жизнедеятельности тоже нужна энергия, только получают они ее не из борща и котлеток, а из почвы и солнечного света. "Питание светом" называется фотосинтезом.


Фотосинтез: что он дает растениям

Самые известные "фотосинтезаторы" - это растения , поэтому речь я поведу о них, хотя той же способностью могут похвастаться и некоторые бактерии .

Наиболее распространенным является хлорофилльный фотосинтез . Именно хлорофилл помогает растениям "ловить" солнечные лучи. Он же окрашивает их листья в зеленый. Хлорофилл находится в хлоропластах - клеточных органеллах растений.

Интересно, что хлорофилл - это еще и пищевая добавка Е140 .


Энергия света нужна для того, чтобы растения могли преобразовать неорганические вещества в органические (которыми смогут питаться).

Помимо света для фотосинтеза растениям нужны вода и углекислый газ .

При такой сложной переработке растения получают необходимые для себя углеводы и аминокислоты.

Кислород - один из побочных продуктов фотосинтеза. Так растения "кормят" не только себя, но и атмосферу.

Альтернативные способы питания

Не заменяет, но дополняет фотосинтез почвенное питание . Корни растений "вытягивают" питательные вещества из почвы. Для этого, кстати, тоже необходима вода. Корни могут впитать только раствор , сухое вещество для них бесполезно.

У некоторых растений в ходе эволюции появился еще один способ питания. Довольно необычный. Эти растения насекомоядны.

Типичные представители:

  • росянка;
  • венерина мухоловка;
  • пузырчатка.

Но насекомые - не основа их питания. Они могут благополучно и мирно жить без животной пищи, но та все-таки служит важным дополнением к их рациону.

На безбелковой диете такие растения обычно растут несколько хуже.

Полезно0 0 Не очень

Комментарии0

Фотосинтез . Какое же это было тяжелое для меня слово в младшей школе. Хорошо хоть, нас не заставляли тогда учить не менее сложный процесс фотосинтеза. Я думал, что понять этот процесс нереально. Но чутка позже меня перевели в гимназию. Учительница биологии, работавшая там, была очень хорошим преподавателем. Она всегда могла найти подход к ребёнку и, используя навороченные схемы, видео и искусство ораторства, вбила в наши ещё неокрепшие головы основы фотосинтеза .


Немного о фотосинтезе

Это незаменимый в природе процесс , без которого мы не смогли бы нормально дышать , а растения вырабатывать себе пищу . При его помощи организмы способны потреблять солнечную энергию, углекислый газ и воду , а взамен вырабатывать углеводы и кислород . Почему я пишу организмы, а не растения? Да потому что фотосинтезировать могут :


Основы фотосинтеза

Я постараюсь рассказать вам об этом как можно более сжато . Ведь процесс настолько тяжёлый , что у неподготовленных просто взорвётся мозг от полученной информации. Предлагаю взглянуть на страницу моего старого конспекта по биологии.


Что вы из этого извлекли? Да, я украинец. Ну а по теме? Я уверен, что вы почти ничего не поняли. Поэтому объясняю вам с нуля .Полезно

Но благодаря ее подробным рассказам и знаниям, полученным в школе, теперь я имею полное представление об этом важном явлении.

Что такое фотосинтез

Не хочу грузить вас сложными терминами и определениями, поэтому сформулирую просто, фотосинтез - это выработка растениями глюкозы и главное кислорода под воздействием солнечного света, и переработки воды и углекислого газа.

У большинства растений во время фотосинтеза участвуют листья. Если рассмотреть листья под микроскопом, то мы увидим, что они состоят из зеленых продольных клеток, которые носят название хлоропласты, их наполняет зеленый пигмент хлорофилл. Это можно увидеть на картинке, где лист увеличен под микроскопом.


Но цвет листьев зеленый не из-за того, что хлорофилл имеет такой цвет. Дело в том, что клетки могут поглощат ь только лучи синего и красного спектра , а зеленый спектр отражают, поэтому в большинстве случаев мы видим листья зеленого цвета . Но бывают случаи, когда других пигментов больше, чем хлорофилла, тогда листья могут приобретать желтую, или даже красную расцветку.

Хлорофиллы впитывают в себя солнечный свет , после чего начинается процесс сложной химической реакции , в ходе которой вырабатываются:

  • сахар;
  • жиры;
  • углеводы;
  • белки;
  • и крахмал .

Но все-таки главной особенностью фотосинтеза является выработка кислорода , который позволяет благополучно жить людям и животным на Земле.

Две фазы фотосинтеза - световая и темновая

Для световой фазы важное значение имеют солнечный свет и пигменты .

Как я уже писала ранее про зеленую и другую окраску листьев, это связано с тем, что пигменты бывают у растений разные:

  • желтые;
  • зеленые;
  • синие;
  • красные.

В фотосинтезе участвуют хлорофиллы (зеленые пигменты). Все пигменты поглощают солнечный свет и передают его в хлорофиллы, так как только они могут его перерабатывать, после чего энергия света превращается в химическую энергию АТФ и восстановленного НАДФ*Н, в результате фоторазложения воды выделяется кислород .


В темной фазе в содержимом хлоропластов восстанавливается поглощенный углекислый газ , что вызывает образование органических веществ .

Полезно0 0 Не очень