Приборы и устройства для санитарной микробиологии. Исследование микрофлоры воздуха - микробиология с техникой микробиологических исследований Нестандартные методики лабораторных исследований воздуха

Развитие исследований в области аэробиологии показало, что в воздухе закрытых помещений наряду с большим количеством сапрофитных микроорганизмов могут находиться патогенные бактерии и вирусы; менингококки, патогенные стафилококки, возбудители дифтерии, туберкулеза, коклюша, вирусы гриппа, оспы, аденовирусы и др. Санитарно-бактериологические исследования воздуха проводят в плановом порядке в яслях и детских садах, больницах, операционных, аптеках, школах, кинотеатрах. Исследуют также атмосферный воздух.

При санитарно-бактериологическом исследовании воздуха проводят:

1) определение общей бактериальной обсемененности воздуха (общее число бактерий в 1 м 3);

2) выявление саиитарно-показательных микроорганизмов;

3) по эпидемическим показаниям выделение вирусов и патогенных бактерий из воздуха закрытых помещений;

4) при исследовании атмосферного воздуха дополнительное определение качественного состава микрофлоры с учетом наличия спорообразующих аэробов и анаэробов, которые служат показателем загрязненности воздуха микроорганизмами почвы.

Методы отбора проб воздуха для бактериологического исследования подразделяют на:

1) аспирационные, основанные на активном просасывании воздуха с помощью различных приборов;

2) седиментационные, основанные на принципе механического оседания микробов.

Пробы воздуха берут на уровне сидящего или стоящего человека, выделяя одну точку взятия проб на каждые 20 м 2 площади.

Аспирационные методы используют при исследовании воздуха как закрытых помещений, так и атмосферного. Наиболее широкое применение в последние годы получил аппарат Кротова (рис. 44), который позволяет пропускать от 25 до 50 л воздуха в минуту. В аппарате Кротова воздух засасывается сквозь узкую щель крышки прибора и ударяется о поверхность плотной питательной среды в чашке Петри, которая медленно вращается на подвижном столике. Поверхность питательной среды равномерно обсеменяется микроорганизмами.

Существуют также другие приборы: ПОВ-1, бактериоуловител Речменского, Дьяконова, в которых воздух просасывается с помощью насосов, воздуходувок, аспираторов через материал, задерживающий бактериальный аэрозоль. В качестве такого материала используют стерильную воду, питательные среды, стерильный ватный тампон, пенистые или порошковые фильтры из растворимых материалов. Объем просасываемого воздуха измеряют с помощью газовых часов. После взятия пробы 1 мл жидкости засевают в чашку с мясо-пептонным агаром для определения общего числа бактерий. Через 24 ч инкубации в термостате при 37°С подсчитывают число колоний и делают пересчет на 1 м 3 воздуха. С целью определения санитарно-показательных микроорганизмов и патогенных микробов делают посевы на различные элективные среды.

Седиментационный метод наиболее старый (метод оседания Коха). Его используют только при исследовании воздуха закрытых помещений. Для этого чашки Петри с питательными средами при исследовании общей бактериальной загрязненности воздуха оставляют открытыми в местах отбора проб в течение 5—10 мин. По окончании экспозиции чашки зарывают и помещаю в термостат при 37°С на 24 ч, а затем при комнатной температуре выдерживает еще сутки. О степени загрязненности воздуха судят по количеству выросших колоний. Несмотря на неточность, данный метод пригоден для сравнительных оценок чистоты воздуха.

В настоящее время бактериологическое исследование воздуха проводится в основном в больницах согласно «Инструкции по бактериологическому контролю комплекса санитарно-гигиенических мероприятий в лебечно-профилактических учреждениях: отделениях хирургического профиля, в палатах и отделениях реанимации и интенсивной терапии» (Приложение к приказу № 720 от 31.07.1978 г. МЗ СССР). Определяют общую бактериальную обсемененность и наличие Staph, aureus.

Для установления общей бактериальной обсемененности воздуха закрытых помещений, согласно инструкции, отбирают две пробы воздуха с помощью аппарата Кротова по 100 л каждая.

С целью исследования воздуха на наличие стафилококка берут пробы воздуха на две чашки с желточно-солевым агаром или молочно-желточно-солевым агаром, пропуская 250 л воздуха.

Санитарно-бактериологическое исследование воздуха имеет большое значение в хирургических отделениях больниц, родильных домах, где имеется опасность возникновения внутрибольничной инфекции. Обнаружение Staph, aureus в этих отделениях является недопустимым. Нарастание количества Staph, aureus определенных фаготипов следует рассматривать как грозный предвестник возможного появления госпитальной инфекции.

Выявление вирусов и патогенных бактерий из воздуха закрытых помещений проводят по эпидемиологическим показаниям при оценке эффективности обеззараживания воздуха, при контроле санитарно-микробиологического содержания больничных учреждений и т. д.

Для выявления микобактерий туберкулеза отбор проб производят при помощи прибора ПОВ-І, в котором в качестве улавливающей используют среду Школьниковой. Исследуют 250—500 л воздуха (см. Микробиологическая диагностика туберкулеза).

Эталоном чистоты атмосферного воздуха считают показатель бактериальной обсемененности в зеленой зоне (зеленая зона ВДНХ—350 микробов в 1 м 3). Пример значительного обсеменения воздуха — места скопления людей и транспорта. Воздух операционных до начала операции должен содержать не более 500, а после нее — не более 1000 микробов в 1 м 3 . Staph, aureus не должны обнаруживаться при исследовании 250 л воздуха. В предоперационных и перевязочных до начала работы количество микробов в 1 м 3 не должно превышать 750. В больничных палатах летом число микробов должно быть менее 3500, а зимой — менее 5000 в 1 м 3 . Здесь допускают наличие стафилококков в воздухе: летом — 24, зимой — 52 при исследовании 250 л воздуха.

  • ТЕМА 7. ГИГИЕНИЧЕСКАЯ ОЦЕНКА ВОДЫ ОЧИЩЕННОЙ (ВОДЫ ДИСТИЛЛИРОВАННОЙ)
  • ТЕМА 9. ГИГИЕНИЧЕСКИЕ ОСНОВЫ ДИЕТИЧЕСКОГО И ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОГО ПИТАНИЯ
  • ТЕМА 11. ФИЗИОЛОГИЯ ФИЗИЧЕСКОГО И УМСТВЕННОГО ТРУДА. ГИГИЕНИЧЕСКАЯ ОЦЕНКА ТЯЖЕСТИ И НАПРЯЖЕННОСТИ ТРУДОВОГО ПРОЦЕССА
  • ТЕМА 12. ГИГИЕНИЧЕСКАЯ ОЦЕНКА ФИЗИЧЕСКИХ ФАКТОРОВ ПРОИЗВОДСТВЕННОЙ СРЕДЫ, ПРИНЦИПЫ ИХ ГИГИЕНИЧЕСКОГО НОРМИРОВАНИЯ. ПРОФИЛАКТИКА ПРОФЕССИОНАЛЬНЫХ ЗАБОЛЕВАНИЙ, ВЫЗВАННЫХ ФАКТОРАМИ ФИЗИЧЕСКОЙ ПРИРОДЫ
  • ТЕМА 13. ГИГИЕНИЧЕСКАЯ ОЦЕНКА ХИМИЧЕСКИХ И БИОЛОГИЧЕСКИХ ФАКТОРОВ ПРОИЗВОДСТВЕННОЙ СРЕДЫ, ПРИНЦИПЫ ИХ ГИГИЕНИЧЕСКОГО НОРМИРОВАНИЯ. ПРОФИЛАКТИКА ПРОФЕССИОНАЛЬНЫХ ЗАБОЛЕВАНИЙ, ВЫЗВАННЫХ ФАКТОРАМИ ХИМИЧЕСКОЙ И БИОЛОГИЧЕСКОЙ ПРИРОДЫ
  • ТЕМА 14. ГИГИЕНИЧЕСКАЯ ОЦЕНКА ЗАСТРОЙКИ, ПЛАНИРОВКИ И РЕЖИМА ЭКСПЛУАТАЦИИ АПТЕЧНЫХ ОРГАНИЗАЦИЙ (АПТЕК)
  • ТЕМА 15. ГИГИЕНИЧЕСКИЕ ТРЕБОВАНИЯ К УСЛОВИЯМ ТРУДА АПТЕЧНЫХ РАБОТНИКОВ
  • ТЕМА 16. ГИГИЕНИЧЕСКАЯ ОЦЕНКА ЗАСТРОЙКИ, ПЛАНИРОВКИ И РЕЖИМА ЭКСПЛУАТАЦИИ ОПТОВЫХ ФАРМАЦЕВТИЧЕСКИХ ОРГАНИЗАЦИЙ (АПТЕЧНЫХ СКЛАДОВ) И КОНТРОЛЬНО- АНАЛИТИЧЕСКИХ ЛАБОРАТОРИЙ
  • ТЕМА 3. ГИГИЕНИЧЕСКАЯ ОЦЕНКА МИКРОБНОГО ЗАГРЯЗНЕНИЯ ВОЗДУХА ПОМЕЩЕНИЙ

    ТЕМА 3. ГИГИЕНИЧЕСКАЯ ОЦЕНКА МИКРОБНОГО ЗАГРЯЗНЕНИЯ ВОЗДУХА ПОМЕЩЕНИЙ

    Цель занятия: изучение методов определения и оценки бактери- альной загрязненности воздушной среды помещений.

    При подготовке к занятию студенты должны проработать следующие вопросы теории.

    1. Эпидемиологическое значение воздушной среды. Источники микробного загрязнения воздуха помещения.

    2. Характеристика бактериального состава атмосферного воздуха и воздуха помещений. Факторы, способствующие снижению микробного загрязнения воздуха помещений.

    3. Значение бактериального загрязнения воздуха при изготовлении лекарственных препаратов.

    4. Методы исследования и оценки степени бактериального загрязнения воздуха закрытых помещений.

    После освоения темы студент должен знать:

    Методику проведения отбора проб воздуха, их анализа, определение степени бактериального загрязнения воздуха аптечных помещений;

    Расчет необходимой мощности и количества бактерицидных облучателей при обеззараживании воздуха и поверхностей помещений аптек;

    уметь:

    Оценить результаты исследований воздуха на соответствие гигиеническим нормативам;

    Оценить условия труда персонала аптек при воздействии биологических факторов по данным санитарно-гигиенического обследования и лабораторных исследований;

    Использовать основные нормативные документы и информационные источники справочного характера для организации контроля за уровнем микробного загрязнения в воздухе аптечных помещений и разработки профилактических мероприятий по предупреждению и снижению уровня загрязнения воздуха аптечных помещений.

    Учебный материал для выполнения задания

    Воздух может загрязняться аэропланктоном, т.е. бактериями, вирусами, спорами плесневых грибов, дрожжевыми грибами, цистами простейших, спорами мхов и др. Основным источником загрязнения воздуха служит почва. Попадающие в атмосферный воздух микроорганизмы сравнительно быстро погибают вследствие высыхания, действия ультрафиолетовых лучей Солнца и отсутствия питательного материала. Однако в приземном слое атмосферы и в воздухе плохо вентилируемых закрытых помещений всегда обнаруживаются сапрофитные и иногда и патогенные микроорганизмы.

    При производстве лекарственных препаратов на основе биологического синтеза работающие могут подвергаться воздействию аэрозоля живых клеток микробов-продуцентов, продуктов метаболизма микроорганизмов и пылевидных конечных продуктов, часто содержащих более 50% белка (например, на заводах, изготавливающих белково-витаминные концентраты). На этапах собственно получения и выделения антибиотиков, а также на заключительных этапах (сушка, фасовка, упаковка) работающие могут подвергать- ся воздействию пыли антибиотиков. Контроль за содержанием в воздухе вредных веществ биологической природы (антибиотики, ферменты, витамины и др.) проводят аналогичным способом: как это принято для химических веществ в соответствии с требованиями Методических указаний «Микробиологический мониторинг произ- водственной среды» (МУ 4.2.734-99) и Приложения 10 Руководства 2.2.755-99 «Методика контроля содержания микроорганизмов в воздухе рабочей зоны».

    В помещениях аптек бактериальное загрязнение воздуха, происходящее за счет выделений посетителей и работников аптек, имеет большое значение, так как является причиной возможного инфицирования персонала возбудителями различных инфекционных заболеваний, а также опасности попадания микроорганизмов в лекарственные средства. Попавшая в лекарственные препараты микрофлора приводит к изменению их физико-химических свойств, снижению терапевтической активности, уменьшению сроков хранения, может явиться причиной развития заболеваний и осложнений у больного. Наиболее интенсивное бактериальное загрязнение воздуха отмечается в торговом зале, моечной и вспомогательных помещениях.

    Биологическими компонентами пыли помещений являются микрофлора (бактерии, вирусы и грибы) верхних дыхательных путей, кожи, микроскопические клещи, споры плесневых грибов. Санитарнопоказательными микроорганизмами в воздухе закрытых помещений являются стафилококки, зеленящие стрептококки, а показателями прямой эпидемической опасности - гемолитические стрептококки. Несмотря на сравнительно короткий срок пребывания в воздухе, микробы создают эпидемическую опасность. Источниками микробного загрязнения воздуха в стационарах всех типов являются медицинский персонал и больные, страдающие стертыми (бессимптомными) формами инфекционных болезней, а также носители полирезистентных к антибиотикам штаммов патогенных и условно патогенных микроорганизмов.

    Нормативов содержания микроорганизмов в воздухе жилых помещений нет. Нормативы бактериальной чистоты производственных помещений (больниц, аптек) разработаны в зависимости от их функционального назначения с учетом интенсивности бактериальной обсемененности и риска возникновения внутрибольничных инфекций. В соответствии с нормативными документами (СанПиН 2.1.3.1375-03) бактериальную чистоту воздуха оценивают дифференцированно по общему количеству микроорганизмов в 1 м 3 воздуха, а в помещениях классов А, Б, и В необходимо контролировать наличие колоний Staphylococcus aureus, которые не должны определяться в 1 м 3 воздуха, и плесневых и дрожжевых грибов, которые не должны определяться в 1 дм 3 воздуха.

    Одним из эффективных методов обеззараживания воздуха является использование бактерицидного действия ультрафиолетовых лучей с длиной волны 254-257 нм. В целях санации аптечных и лечебных помещений в настоящее время применяются бактерицидные увиолевые лампы БУВ-15, БУВ-30, представляющие собой газоразрядные ртутные лампы низкого давления. Лампы сделаны в виде трубок разной длины из увиолевого стекла и наполнены газовой смесью, состоящей из паров ртути и аргона. В концы трубок впаяны вольфрамовые электроды. При пропускании тока через трубку возникает газовый разряд, в результате которого происходит свечение. Увиолевое стекло лампы пропускает УФ-лучи, убивающие микробы, обеспечивая при этом высокий обеззараживающий эффект.

    В аптеках применяются потолочные бактерицидные облучатели (ПБО) и настенные бактерицидные облучатели (НБО). ПБО имеют

    две экранированные лампы БУВ-15 и две открытые лампы БУВ-30. При использовании ПБО, особенно при включении неэкранированных бактерицидных ламп, обеззараживающий эффект наступает за счет действия прямого потока лучей. НБО имеет две бактерицидные лампы: одна, экранированная лампа, облучает верхнюю зону и другая - неэкранированная - нижнюю зону. Надежный бактерицидный эффект достигается при работе бактерицидных облучателей в течение двух часов при мощности ламп 3 Вт на 1 м 3 .

    При длительной работе бактерицидных ламп в воздухе помещений могут накапливаться озон и окись азота в количестве, превышающих ПДК этих веществ, поэтому использование ультрафиолетового облучения требует соблюдения правил техники безопасности. В присутствии работающих рекомендуется применять экранированные бактерицидные лампы мощностью 1 Вт на 1 м 3 , а в отсутствии людей используются бактерицидные лампы открытого типа (НЭ) мощностью 3 ВТ на 1 м 3 . ПБО и НБО являются стационарными бактерицидными установками. В настоящее время в лечебно-профилактических учреждениях и аптеках применяются передвижные бактерицидные облучатели, что дает возможность более эффективно производить обеззараживание воздуха.

    Определение количества бактерий осуществляется седиментационным или аспирационным методами.

    Седиментационный метод основан на естественном осаждении бактерий из воздуха на чашку Петри с питательной средой и последующим выдерживанием в термостате в течение двух суток при температуре 37 ?С и подсчетом колоний, выросших за это время на всей площади чашки.

    Принцип аспирационного метода - аспирация определенного объема воздуха с высеванием содержащихся в нем бактерий на поверхность питательной среды с применением щелевого прибора Кротова (рис. 10) или с помощью микробиологического импактора воздуха «Флора-100».

    Прибор Кротова представляет собой цилиндр со съемной крышкой, в котором находится электромотор с центробежным вентилято- ром. Принцип работы прибора основан на инерционном осаждении частиц аэрозоля на поверхность питательной среды. Исследуемый воздух всасывается со скоростью 20-25 л/мин через клиновидную

    щель в крышке прибора, ударяется о поверхность плотной питательной среды, и микробы задерживаются на ее влажной поверхности. Для равномерного посева микробов чашка Петри с питательной сре- дой помещается на подставку, вращающуюся со скоростью 1 оборот в 1 с. Скорость аспирации воздуха регулируется по микроманометру (реометру) прибора. Общий объем пробы при значительном загрязнении воздуха должен составлять 40- 50 л, при незначительном - более 100 л. Продолжительность аспирации 2-5 мин. После инкубирования отобранных проб при температуре 37 ?С в течение 1-2 суток в зависимости от выделяемых микроорганизмов производится подсчет выросших колоний. Учитывая объем взятой пробы воздуха, вычисляется количество микробов в 1 м 3 воздуха.

    Рис. 10. Прибор Кротова для бактериологического исследования воздуха

    Импактор «Флора-100», современная модель прибора для улавливания бактерий из воздуха, работает в автоматическом режиме и превосходит прибор Кротова по техническим характеристикам.

    Определение количества микроорганизмов в воздухе служит одним из гигиенических критериев его чистоты. О степени бактери- ального загрязнения воздуха судят по общему количеству бактерий, содержащихся в 1 м 3 воздуха. Кроме того, оценку воздуха можно дать по содержанию санитарно-показательных микроорганизмов (разных видов стрептококков и стафилококков) - обычных обитателей слизистых оболочек дыхательных путей человека. Содержание микроорганизмов в воздухе различно в разные сезоны года. В холод-

    ный период воздух имеет меньшее микробное загрязнение, а летом воздух больше загрязняется микробами, поступающими в него в большом количестве вместе с частичками почвенной пыли. В качестве ориентировочных показателей оценки бактериального загрязнения воздуха в жилых помещениях используются предложенные А.И. Шафиром следующие величины (табл. 9).

    Таблица 9. Оценка чистоты воздуха по бактериологическим показателям воздуха аптечных помещений в разные периоды года

    Оценка чистоты воздуха

    Летний период (апрель-сентябрь)

    Зимний период (октябрь-март)

    Всего микроорганизмов

    Гемолитического стрептококка

    Всего микроорганизмов

    Гемолитического стрептококка

    Чистый

    <3500

    <5000

    Умеренно загрязненный

    3500-5000

    24-52

    5000-7000

    52-124

    Загрязненный

    >5000

    >7000

    >124

    Лабораторная работа «Определение и оценка микробного загрязнения воздуха»

    Задания студенту

    1. Произвести бактериологический посев воздуха с помощью прибора Кротова.

    2. Произвести подсчет колоний в чашке Петри, посев воздуха на питательную среду которой был сделан с помощью аппарата Кротова сутки назад со скоростью 20 л/мин в течение 5 мин и которая находи- лась в термостате при температуре 37 ?С в течение суток.

    3. Определить уровень бактериального загрязнения в помещении аптеки.

    4. Дать гигиеническую оценку эффективности работы бактерицидных ламп по условиям ситуационной задачи.

    Методика работы

    Определение микробного загрязнения воздуха

    Получив одну из чашек Петри с выросшими микробными колониями, ознакомиться с содержащимися в задаче сведениями о времени,

    месте и условиях отбора пробы воздуха (скорость и время аспирации).

    Для подсчета числа колоний надо разделить поверхность чашки на 4 равных стора, нанеся линии раздела на стекло крышки. Подсчитать общее число колоний на поверхности j чашки и умножить на 4. Подсчет можно осуществлять простым глазом или через лупу. Число выросших колоний можно принять примерно равным количеству микробных тел в посеянном на чашку Петри объеме воздуха. Затем, учитывая условия отбора пробы, рассчитать общее количество микроорганизмов в 1 м 3 воздуха помещения.

    Оценку степени микробного загрязнения воздуха произвести в соответствии с градациями, приведенными в табл. 9.

    Расчет необходимой мощности и количества УФ-облучателей в помещении

    Необходимая мощность (N) бактерицидных ламп определяется по формуле:

    N = E V,

    где: E - нормируемая величина удельной мощности ламп:

    3 Вт/м 3 - для ламп открытого типа,

    1 Вт/м 3 - для ламп экранированного типа,

    V - объем помещения, м 3 .

    Необходимое количество бактерицидных ламп (К) определяется по формуле:

    К = N / (мощность бактерицидной лампы).


    Санитарно-микробиологическое исследование воздуха можно разделить на 4 этапа:

    1) отбор проб;
    2) обработка, транспортировка, хранение проб, получение концентрата микроорганизмов (если необходимо);
    3) бактериологический посев, культивирование микроорганизмов;
    4) идентификация выделенной культуры.

    Отбор проб, как и при исследовании любого объекта, является наиболее ответственным. Правильное взятие проб гарантирует точность исследования. В закрытых помещениях точки отбора проб устанавливаются из расчета на каждые 20 м 2 площади - одна проба воздуха, по типу конверта: 4 точки по углам комнаты (на расстоянии 0,5 м от стен) и 5-я точка - в центре. Пробы воздуха забираются на высоте 1,6-1,8 м от пола - на уровне дыхания в жилых помещениях. Пробы необходимо отбирать днем (в период активной деятельности человека), после влажной уборки и проветривания помещения. Атмосферный воздух исследуют в жилой зоне на уровне 0,5-2 м от земли вблизи источников загрязнения, а также в зеленых зонах (парки, сады и т.д.) для оценки их влияния на микрофлору воздуха.

    Следует обратить внимание на то, что при отборе проб воздуха во многих случаях происходит посев его на питательную среду.

    Все методы отбора проб воздуха можно разделить на седиментационные и аспирационные.

    Седиментационный - наиболее старый метод, широко распространен благодаря простоте и доступности, однако является неточным. Метод предложен Р. Кохом и заключается в способности микроорганизмов под действием силы тяжести и под влиянием движения воздуха (вместе с частицами пыли и капельками аэрозоля) оседать на поверхность питательной среды в открытые чашки Петри. Чашки устанавливаются в точках отбора на горизонтальной поверхности. При определении общей микробной обсемененности чашки с мясопептонным агаром оставляют открытыми на 5-10 мин или дольше в зависимости от степени предполагаемого бактериального загрязнения. Для выявления санитарно-показательных микробов применяют среду Гарро или Туржецкого (для обнаружения стрептококков), молочно-солевой или желточно-солевой агар (для определения стафилококков), суслоагар или среду Сабуро (для выявления дрожжей и грибов). При определении санитарно- показательных микроорганизмов чашки оставляют открытыми в течение 40-60 мин.

    По окончании экспозиции все чашки закрывают, помещают в термостат на сутки для культивирования при температуре, оптимальной для развития выделяемого микроорганизма, затем (если этого требуют исследования) на 48 ч оставляют при комнатной температуре для образования пигмента пигментообразующими микроорганизмами.

    Седиментационный метод имеет ряд недостатков: на поверхность среды оседают только грубодисперсные фракции аэрозоля; нередко колонии образуются не из единичной клетки, а из скопления микробов; на применяемых питательных средах вырастает только часть воздушной микрофлоры. К тому же этот метод совершенно непригоден при исследовании бактериальной загрязненности атмосферного воздуха.

    Более совершенными методами являются аспирационные, основанные на принудительном осаждении микроорганизмов из воздуха на поверхность плотной питательной среды или в улавливающую жидкость (мясо-пептонный бульон, буферный раствор, изотонический раствор хлорида натрия и др.). В практике санитарной службы при аспирационном взятии проб используются аппарат Кротова, бактериоуловитель Речменского, прибор для отбора проб воздуха (ПОВ-1), пробоотборник аэрозольный бактериологический (ПАБ-1), бактериально-вирусный электропреципитатор (БВЭП-1), прибор Киктенко, приборы Андерсена, Дьяконова, МБ и др. Для исследования атмосферы могут быть использованы и мембранные фильтры № 4, через которые воздух просасывается с помощью аппарата Зейтца. Большое разнообразие приборов свидетельствует об отсутствии универсального аппарата и о большей или меньшей степени их несовершенства.

    Прибор Кротова. В настоящее время этот прибор широко применяется при исследовании воздуха закрытых помещений и имеется в лабораториях СЭС.

    Принцип работы аппарата Кротова основан на том, что воздух, просасываемый через клиновидную щель в крышке аппарата, ударяется о поверхность питательной среды, при этом частицы пыли и аэрозоля прилипают к среде, а вместе с ними и микроорганизмы, находящиеся в воздухе. Чашку Петри с тонким слоем среды укрепляют на вращающемся столике аппарата, что обеспечивает равномерное распределение бактерий на ее поверхности. Работает аппарат от электросети. После отбора пробы с определенной экспозицией чашку вынимают, закрывают крышкой и помещают на 48 ч в термостат. Обычно отбор проб проводят со скоростью 20-25 л/мин в течение 5 мин.

    Таким образом, определяется флора в 100-125 л воздуха. При обнаружении санитарно-показательных микроорганизмов объем исследуемого воздуха увеличивают до 250 л.

    Приемник перед забором пробы воздуха заполняется 3-5 мл улавливающей жидкости (водой, мясопептонным бульоном, изотоническим раствором хлорида натрия).

    Прибор Речменского работает по принципу пульверизатора: при прохождении воздуха через узкое отверстие воронки жидкость из приемника через капилляр в виде капелек поднимается в цилиндр. Капли жидкости еще больше дробятся, ударяясь о стеклянную лопаточку и стенки сосуда, создавая облачко из мелких капелек, на которых и адсорбируются находящиеся в воздухе микроорганизмы. Насыщенные бактериями капли жидкости стекают в приемник, а затем опять диспергируются, что обеспечивает максимальное улавливание бактерий из воздуха. При работе прибор помещают под углом 15-25°, что обеспечивает стекание улавливающей жидкости в приемник. Скорость отбора проб воздуха через аппарат Речменского - 10-20 л/мин. По окончании работы жидкость из приемника забирают стерильной пипеткой и засевают (по 0,2 мл) на поверхность плотных питательных сред. Преимуществом бактериоуловителя Речменского является высокая эффективность улавливания бактериальных аэрозолей. Недостатки прибора заключаются в трудности его изготовления, нестандартности получаемых аппаратов, их большой хрупкости и сравнительно низкой производительности.

    Большим преимуществом являются серийный выпуск этого прибора (что дало возможность оснастить им лаборатории СЭС), его портативность, более высокая производительность (20-25 л/мин). Колба прибора, в которую помещается улавливающая жидкость, изготовляется из термостойкого плексигласа, капилляр из нержавеющей стали. В колбу вмонтирован пульверизатор, вызывающий диспергирование улавливающей жидкости при просасывании воздуха. Такое устройство дает возможность легко очищать и стерилизовать колбу с диспергирующим устройством простым кипячением в течение 30 мин (автоклавирование недопустимо, так как оно вызывает деформацию цилиндра).

    Перед забором проб воздуха в колбу вносят 5-10 мл улавливающей жидкости (чаще всего мясопептонный бульон) и устанавливают ее под углом 10°, что обеспечивает естественное стекание жидкости после диспергирования. Воздух, проходя через колбу и пульверизатор, вызывает образование мелких капелек улавливающей жидкости, на которых оседают микроорганизмы. Прибор ПОВ-1 применяется для исследования воздуха закрытых помещений на общую микробную обсемененность, для обнаружения патогенных бактерий (например, микобактерий туберкулеза) и респираторных вирусов в воздухе больничных палат.

    Пробоотборник аэрозольный бактериологический (ПАБ-1). Механизм действия ПАБ-1 основан на принципе электростатического осаждения частиц аэрозоля (а следовательно, и микроорганизмов) из воздуха при прохождении его через прибор, в котором эти частицы получают электрический заряд и осаждаются на электродах с противоположным знаком. На электродах для улавливания аэрозолей помещают в горизонтальном положении металлические поддоны с твердыми средами в чашках Петри или жидкой питательной средой (15-20 мл). Прибор переносной с большой производительностью 150-250 л/мин, т.е. за 1 ч можно отобрать 5-6 м 3 воздуха. Его рекомендуют применять для исследования больших объемов воздуха при обнаружении условно-патогенных и патогенных микроорганизмов, например, при выявлении в воздухе палат больниц возбудителей внутрибольничных инфекций (Pseudomonas aeruginosa. Staph, aureus и др.), определении сальмонелл и эшерихий в атмосферном воздухе в местах дождевания при орошении земледельческих полей сточными водами.

    Бактериально-вирусный электропреципитатор (БВЭП-1)

    Прибор основан на аспирационно-ионизационном принципе действия. БВЭП-1 состоит из осадительной камеры, в которую вмонтированы электроды: отрицательный в виде приводящей трубки, через которую поступает воздух (и частички аэрозоля соответственно заряжаются отрицательно), и положительный, на котором оседают бактерии.

    Прибор МБ. Этот прибор служит не только для определения общей микробной обсемененности, но и для отбора проб воздуха с аэрозольными частицами различных размеров. Прибор МБ построен по принципу «сита» и представляет собой цилиндр, разделенный на 6 горизонтальных полос, на каждую из которых помещают чашки Петри с МПА. Воздух просасывается, начиная с верхней ступени, в пластине которой отверстия самые крупные, и чем ниже ступень, тем меньше размером отверстия (через последние проходят только тонкодисперсные фракции воздушного аэрозоля). Прибор рассчитан на улавливание частиц аэрозоля размером более 1 мкм при скорости отбора воздуха 30 л/мин. Уменьшение числа отверстий обеспечивает более равномерное распределение по питательной среде аэрозоля из воздуха. Для улавливания еще более мелких частиц аэрозоля можно добавлять дополнительно фильтр из фильтрующего материала АФА.

    При использовании любого из перечисленных приборов получаемые результаты являются приблизительными, однако они дают более правильную оценку обсемененности воздуха в сравнении с седиментационным методом. Поскольку и отбор и санитарно-микробиологические исследования воздуха не регламентированы ГОСТ, то можно использовать любой прибор для оценки бактериальной загрязненности воздуха. Во многих случаях отбор проб совмещен с этапом посева.

    Для снижения численности микроорганизмов в воздухе закрытых помещений применяют следующие средства:
    а) химические - обработка озоном, двуокисью азота, распыление молочной кислоты,
    б) механические - пропускание воздуха через специальные фильтры,
    в) физические - ультрафиолетовое облучение.

    Определение общей численности сапрофитных бактерий

    Общая бактериальная обсемененность воздуха или микробное число - это суммарное количество микроорганизмов, содержащихся в 1 м 3 воздуха. Для определения общего количества бактерий в воздухе закрытых помещений забирают две пробы (объемом по 100 л каждая) на чашки Петри с МПА при помощи любого прибора (чаще всего аппарата Кротова), либо седиментационным методом, расставляя чашки с питательной средой по принципу конверта. Чашки с посевом помещают в термостат на сутки, а затем на 48 ч оставляют при комнатной температуре. Экспозиция чашек с посевами на свету дает возможность подсчитать раздельно количество пигментных колоний (желтых, белых, розовых, черных, оранжевых и др.), количество спорообразующих бацилл, грибов и актиномицетов.

    Подсчитывают количество колоний на обеих чашках, вычисляют среднее арифметическое и делают перерасчет на количество микроорганизмов в 1 м 3 воздуха. Бациллы образуют колонии, как правило, крупные, круглые, с неровными краями, сухие, морщинистые. Колонии грибов с пушистым налетом (Мисог и Aspergillus) и плотные - зеленоватые или сероватые (Penicillium). Актиномицеты образуют беловатые колонии, вросшие в агар. Количество каждой группы колоний (пигментных, беспигментных, плесеней, бацилл, актиномицетов) выражают в процентах по отношению к общему числу.

    При определении микробного числа методом седиментации по Коху подсчитываются колонии, выросшие на МПА в чашках Петри, и расчет ведется по B.Л. Омелянскому. Если придерживаться этой методики, на чашку площадью 100 см 2 за 5 мин оседает такое количество микробов, которое содержится в 10 л воздуха.

    Определение стафилококков

    Стафилококки являются одним из наиболее распространенных микроорганизмов в воздухе закрытых помещений, что обусловливается значительной устойчивостью их к различным факторам окружающей среды. Обнаружение патогенных стафилококков в воздухе закрытых помещений имеет санитарно-показательное значение и свидетельствует об эпидемическом неблагополучии. Отбор проб воздуха проводится с помощью аппарата Кротова в количестве 250 л на 2-3 чашки с молочно-желточно-солевым агаром (или молочно- солевым, желточно-солевым) и на чашку с кровяным агаром. Чашки инкубируют при температуре 37°С в течение 48 ч. Изучают культуральные признаки всех видов колоний, из подозрительных готовят мазки и окрашивают по Граму.

    Помимо качественной характеристики отдельных колоний, подсчитывают количество выросших колоний стафилококков в 1 м 3 воздуха.

    Определение стрептококков

    Стрептококки также являются санитарно-показательными микроорганизмами воздуха, в который они попадают от больных скарлатиной, тонзиллитами, ангиной и носителей стрептококков. Отбор проб воздуха при исследовании на наличие а- и р-гемолитических стрептококков производят с помощью аппарата Кротова на чашки с кровяным агаром, средами Гарро и Туржецкого. Забирают 200-250 л воздуха, чашки с посевами выдерживают в термостате 18-24 ч и затем еще 48 ч при комнатной температуре (после предварительного просмотра и учета). Идентификацию проводят по общепринятой методике.

    Определение патогенных микроорганизмов в воздухе

    Ввиду малой концентрации патогенных микроорганизмов в воздухе закрытых помещений, их выделение является достаточно трудной задачей.

    При расшифровке внутрибольничных инфекций определяют в воздухе присутствие стафилококков, стрептококков, синегнойной палочки, сальмонелл, протеев и др. Отбор проб воздуха производят с помощью ПАБ-1 в объеме не менее 1000 л. Посев производят на соответствующие элективные среды. Если используется жидкая среда как улавливающая жидкость, то пробирку с жидкостью помещают в термостат на сутки для подращивания (получение накопительной культуры), а затем высевают на элективную среду.

    При исследовании воздуха на наличие микобактерий туберкулеза отбор проб производят с помощью прибора ПОВ-1 в объеме 250-500 л воздуха. В качестве улавливающей жидкости берут среду Школьниковой, которую затем обрабатывают 3% раствором серной кислоты (для подавления сопутствующей микрофлоры) и центрифугируют. Осадок засевают в пробирки на одну из яичных сред, чаще среду Левенштейна - Иенсена. Инкубируют при 37°С до 3 мес. Отсутствие роста в течение 3 мес дает возможность выдать отрицательный ответ. Пробирки первый раз просматривают через 3 нед, затем каждые 10 дней. Выделенную культуру идентифицируют, определяют ее вирулентность (заражением морских свинок - биопроба) и при необходимости определяют устойчивость к лекарственным препаратам.

    При определении в воздухе коринебактерий дифтерии для посева воздуха используют чашки со средой Клауберга.

    В последние годы определяют в атмосферном воздухе в районах дождевания земледельческих полей, при орошении их сточными водами, сальмонеллы в случае появления заболевания среди персонала станций орошения или населения. Отбор проб производят с помощью аппарата Кротова на чашки с висмут-сульфитным агаром. Исследуют не менее 200 л воздуха. Выделенная культура идентифицируется по обычной схеме определения сальмонелл.

    В связи с развитием микробиологической промышленности возникла необходимость исследования воздуха с целью обнаружения грибов-продуцентов при производстве антибиотиков, ферментных препаратов, при изготовлении кормовых дрожжей и др. Для исследования воздуха на плесневые грибы рода Candida отбор проб производят с помощью аппарата Кротова в объеме от 100 до 1000 л на чашки со средой Чапека, суслоагаром (для обнаружения плесневых грибов) и с метабисульфит-натрий- агаром (МБС-агар) с добавлением антибиотиков (для обнаружения дрожжеподобных грибов рода Candida). Чашки инкубируют в термостате при температуре 26-27°С в течение 3-4 сут (для плесневых грибов) и при 35-37°С в течение 2-3 сут (для грибов - продуцентов и дрожжеподобных рода Candida). Идентификация проводится с учетом особенностей плодоносящих гиф и характера мицелия. Считают, что концентрация дрожжеподобных грибов в количестве 500-600 клеток в 1 м 3 воздуха рабочего помещения является предельной, превышение ее ведет к развитию аллергических реакций у рабочих.

    

    Страница 87 из 91

    Количественный и особенно качественный состав микрофлоры воздуха является санитарным показателем степени загрязнения воздушной среды.
    Для оценки степени чистоты воздуха А. И. Шафир предложил следующие критерии. В жилых невентилируемых помещениях в летнее время воздух может считаться чистым при условии, если общее количество микроорганизмов в 1 м3 воздуха будет меньше 1500, а зеленящего и гемолитического стрептококка меньше 16, а загрязненным, если содержит больше 2500 микроорганизмов и больше 36 стрептококков. Зимой, естественно, количество микроорганизмов в помещениях значительно увеличивается. По данным. А. И. Шафира, для чистого воздуха общее количество микробов будет меньше 4500, а стрептококков меньше 36 в 1 м3, для загрязненного - общее количество микробов больше 7000, а стрептококков больше 124.
    Для определения степени чистоты воздуха применяются следующие микробиологические методы исследования.

    1. Метод, основанный на принципе ударного действия воздушной струи.
    2. Седиментационный метод.

    При любом микробиологическом методе исследования воздуха учитывается как общее количество микроорганизмов в определенном объеме воздуха, так и их качественный состав. Отдельно учитывается аэробная и анаэробная микрофлора.
    Для выявления аэробных сапрофитов в воздухе посев производится на мясо-пептонный агар, а при исследовании на наличие стрепто- и стафилококков воздух засевают на специальные среды (сахарный агар, кровяной агар). Для выделения и подсчета стафило- и стрептококков применяют также мясо-пептонный агар с добавлением 3% дефибринированной бараньей крови, 0,25% глюкозы и генцианвиолета 1: 50 000-1: 500 000.
    Для исследования на наличие анаэробных микробов воздух засевают на железосульфитную среду (среда Вильсон-Блера). Эту среду готовят следующим образом. К 100 мл расплавленного, а затем остуженного до 80° щелочного мясо-пептонного агара добавляют 1% стерильной глюкозы, 10 мл 20% сернокислого натрия и 1 мл 8% раствора хлорного железа. Раствор хлорного железа готовится на стерильной дистиллированной воде. Раствор сернокислого натрия стерилизуется 1 час текучим паром.
    Метод исследования воздуха по принципу ударной струи. Предложен ряд аппаратов для исследования воздуха методом ударной струи. Аппарат, сконструированный советским ученым Ю. А. Кротовым, имеет преимущество перед другими (рис. 124, 125).
    Аппарат Кротова смонтирован в одном ящике и состоит из трех частей: 1) узла для отбора проб воздуха; 2) микроманометра; 3) питающего механизма, размещенного в деревянном футляре (электрической части).

    Прибор можно подключить как на 127 V, так и на 220 V, и при помощи специального переключателя и реостата регулировать скорость проходящей через прибор струи воздуха. При помощи аппарата Кротова в течение 1 минуты можно пропустить от 25 до 50 л воздуха. Механизм действия аппарата Кротова заключается в следующем. Исследуемый воздух при помощи центробежного вентилятора, вращающегося со скоростью 4000- 5000 оборотов в минуту, энергично, засасывается через щель крышки прибора и ударяется о поверхность открытой чашки Гейденрейха, залитой питательным агаром и установленной на диске малой крыльчатки. Содержащиеся в воздухе микроорганизмы оседают на питательном агаре чашки Гейденрейха.

    Рис. 124. Прибор Кротова для микробиологического исследования воздуха (общий вид).


    Рис: 125. Прибор Кротова для микробиологического исследования воздуха (схема).
    1 - цилиндрический корпус; 2 - основание корпуса; 3 - электромотор; 4 - центробежный вентилятор; 5 - восьмилопастная крыльчатка; 6 - диск; 7 - пружины; 8 - чашка Гейденрейха; 9 - крышки; 10 - накидные замки; 11 - диск из плексигласа; 12 - клиновидная щель; 13 - разрезное кольцо; 14 - штуцер с диафрагмой; 15 - выводная трубка.

    Для равномерного распределения микроорганизмов по всей поверхности чашки столик с чашкой должен вращаться не очень быстро (60 оборотов в минуту). Из прибора воздух выводится через воздухопроводную трубку, которая соединена с микроманометром, показывающим скорость пропускания воздуха через прибор. Экспозиция чашки 10 минут, после чего мотор останавливают. Снимают крышку прибора. Достают чашку с посевом воздуха и закрывают ее крышкой. Дальше поступают так. При определении аэробной флоры чашку Гейденрейха с посевом ставят на 24 часа в термостат при температуре 37°, а затем оставляют на 24 часа при комнатной температуре и проводят подсчет всех выросших колоний на поверхности агара. Затем чашку оставляют еще на 24 часа при комнатной температуре, после чего (через 72 часа с момента посева) проводят дифференцированный подсчет, т. е. учитывают отдельно пигментные формы, спороносные формы и плесневые грибы.
    Для определения количества анаэробных микроорганизмов чашку с посевом, вынутую из прибора Кротова, для создания анаэробных условий роста микробов дополнительно заливают 10-15 мл мясо-пептонного агара и ставят в термостат при температуре 37° на 24 часа.
    На сульфитном агаре, которым залита чашка до посева, анаэробные микробы дадут рост в виде почерневших колоний, по числу которых можно судить о степени загрязнения воздуха анаэробными микробами.
    Бактериальное загрязнение воздуха выражается общим числом микробов в 1 м3 его.
    Пример. Через аппарат Кротова пропущено за 10 минут 125 л воздуха, на поверхности среды выросло 100 колоний.
    Число микробов в 1 м3 воздуха
    Седиментационный метод исследования воздуха (чашечный метод). Седиментационный метод является наиболее простым методом для изучения микрофлоры воздуха, хотя не обладает большой точностью.
    Если применять чашки одного диаметра при одном сроке экспозиции, то этот метод может быть использован для получения сравнительных данных по бактериальному загрязнению воздуха. Техника этого метода заключается в следующем. Чашки Гейденрейха-Петри с застывшим агаром выставляют в открытом виде на разных высотах в помещении на различные сроки (от 15 минут
    до 1.5 часов). Затем чашки закрывают и ставят в термостат. Инкубацию посевов производят по методике, описанной выше.
    Для пересчета количества микробов на 1 м3 пользуются формулой В. Л. Омелянского, который считал, что в течение 10-минутной экспозиции на поверхность плотной питательной среды 100 см2 оседает столько микробов, сколько их находится в 10 л воздуха. Им была составлена соответствующая таблица расчета, пользуясь которой можно высчитать общее количество микроорганизмов в 1 м3 воздуха. В этой таблице даны постоянные множители, на которые надо умножить полученные количества колоний в зависимости от диаметра и площади чашки, где производится посев. Приводим схему постоянных множителей для расчета количества микробов по Омелянскому (табл. 34).
    Таблица 34
    Расчет числа микробов в 1 м3 воздуха (по Омелянскому)


    Диаметр чашки в см

    Площадь чашки в см2

    Множитель расчета числа микробов в 1 м3 воздуха

    Пример. На чашке площадью 63 см2 выросло 25 колоний. Количество микробов в 1 м3 воздуха в данном случае равно 25X80 = 2000.

    Среди факторов окружающей среды, влияющих на жизнь человека, воздух занимает ведущее место. Наука, изучающая микрофлору воздуха, называется аэромикробиологией.

    Воздух не является благоприятной средой для развития микроорганизмов, так как не содержит питательных веществ и находится в постоянном движении. Поэтому большинство микроорганизмов быстро исчезают из воздуха. Однако некоторые из них более устойчивые, например туберкулезная палочка, споры клостридий, грибов и другие, могут длительно сохраняться в воздухе.

    В воздухе городов микроорганизмов больше, чем в воздухе лесов и полей.

    Количество микроорганизмов в воздухе с высотой уменьшается. Например, на высоте 500 м над Москвой в 1 м 3 воздуха обнаруживают 2-3 бактерии, а на высоте 1000 м - вдвое меньше.

    Количество микроорганизмов в помещениях обычно больше, чем в воздухе открытых мест.

    ГОСТ не нормирует методы проведения исследования воздуха. Раньше большое внимание уделялось определению гемолитических стрептококков как показателей загрязнения воздуха закрытых помещений микрофлорой, находящейся в носоглотке человека. В настоящее время больше внимания уделяют непосредственному обнаружению в воздухе патогенных и условно-патогенных микроорганизмов.

    Санитарно-бактериологическое исследование воздуха проводят в плановом порядке: в больницах, операционных, детских учреждениях и др.

    При санитарно-бактериологическом исследовании определяют:

    1. Общее количество бактерий в 1 м 3 воздуха.

    2. Наличие патогенных и условно-патогенных микроорганизмов в 1 м 3 воздуха.

    Выявление микроорганизмов в воздухе проводится при помощи специальных приборов и специальных сред (диагностических и дифференциально-диагностических).

    Методы отбора проб воздуха

    Существуют два основных способа отбора проб воздуха для исследования: 1) седиментационный - основан на механическом оседании микроорганизмов; 2) аспирационный - основан на активном просасывании воздуха (этот метод дает возможность определить не только качественное, но и количественное содержание бактерий).

    Седиментационный метод

    Чашки Петри с питательной средой (МПА) устанавливают в открытом виде горизонтально, на разном уровне от пола. Метод основан на механическом оседании бактерий на поверхность агара в чашках Петри. Чашки со средой экспонируют от 10 до 20 мин, в зависимости от предполагаемого загрязнения воздуха. Для выявления патогенной флоры используют элективные среды. Экспозиция в этих случаях удлиняется до 2-3 ч. После экспозиции чашки закрывают, доставляют в лабораторию и ставят в термостат на 24 ч при температуре 37° С. На следующий день изучают выросшие колонии. Метод этот используют в основном в закрытых помещениях.

    (Аспирационный метод )

    Бактериоуловитель Речменского. Перед работой прибор заполняют стерильной содой. Действие прибора основано на протягивании через него воздуха с помощью аспиратора. При этом происходит распыление находящейся в приборе жидкости. После окончания просасывания жидкость, через которую был пропущен воздух, засевают по 0,1-0,2 мл на МПА в чашках Петри. При необходимости использовать элективные среды посевную дозу увеличивают (0,3-0,5 мл). Полученная в приемнике жидкость может быть использована для заражения животных (например, при исследованиях, проводимых для выявления вирусов, риккетсий и т. д.).

    Прибор Дьяконова также основан на улавливании бактерий в жидкости, через которую пропущен воздух.

    Прибор ПАБ-1 предназначен для бактериологического исследования больших объемов воздуха в течение короткого промежутка времени. Получение проб воздуха производят со скоростью 125-150 л/мин. Принцип работы прибора основан на улавливании микроорганизмов на электрод противоположного заряда. Большая скорость отбора проб воздуха в этом приборе и возможность посева его на различные питательные среды имеет значение для обнаружения патогенных и условно-патогенных бактерий (например, синегнойной палочки в хирургических отделениях и др.).

    Аппарат Кротова. Действие основано на принципе удара струи воздуха на среду в чашках Петри. Аппарат состоит из трех частей: узла для отбора проб воздуха, ротаметра, электрической части питающего механизма.

    Исследуемый воздух при помощи центробежного вентилятора, вращающегося со скоростью 4000-5000 об/мин, засасывается в щель прибора и ударяется о поверхность открытой чашки Петри со средой. Содержащиеся в воздухе микроорганизмы оседают на питательный агар. Для равномерного распределения микроорганизмов по всей поверхности столик с находящейся на нем чашкой вращается. Из прибора воздух выводится через воздухопроводную трубку, которая соединена с ротаметром, показывающим скорость протягивания воздуха через прибор.

    Недостатком прибора Кротова является то, что он нуждается в электроэнергии, поэтому не во всех условиях может быть использован.

    Первый день исследования

    Отобранные пробы помещают в термостат при 37° С на 18-24 ч.

    Второй день исследования

    Чашку вынимают из термостата и производят подсчет колоний. Бактериальное загрязнение воздуха выражается общим числом микробов в 1 м 3 его.

    Расчет. Например, за 10 мин пропущено 125 л воздуха, на поверхности выросло 100 колоний.

    Для определения золотистого стафилококка забор производят на желточно-солевой агар. Чашки с посевами инкубируют в термостате при 37° С в течение 24 ч и 24 ч выдерживают при комнатной температуре для выявления пигмента. Колонии, подозрительные на S. aureus, подлежат дальнейшей идентификации (см. главу 14).

    В детских учреждениях воздух проверяют на наличие сальмонелл. Для этого воздух засевают в чашку со средой висмут-сульфитный агар.

    Выявление патогенных бактерий и вирусов в воздухе закрытых помещений проводят по эпидемиологическим показаниям. Для выявления возбудителей туберкулеза пользуются прибором ПОВ, в качестве улавливающей используется среда Школьниковой.

    Контрольные вопросы

    1. Является ли воздух благоприятной средой для развития микроорганизмов?

    2. В каких учреждениях проводят плановое исследование микрофлоры воздуха?

    3. Расскажите устройство аппарата Кротова.

    Задача

    За 10 мин было пропущено 250 л воздуха. Выросло 150 колоний. Рассчитайте количество колоний в 1 м воздуха.

    Задание

    Возьмите 4 чашки Петри со средой МПА, откройте их и установите на разном уровне от пола. Через 20 мин закройте чашки и поставьте в термостат. На следующий день подсчитайте количество выросших колоний, определите степень загрязнения воздуха.