Hc sr04 описание. HC-SR04 Ультразвуковой модуль измерения расстояния. Необходимые компоненты для подключения ультразвукового дальномера

терморегулятор W1209 DC, Релейный модуль, датчик движения HC-SR501, Модуль Wi-Fi ESP8266-12E, датчик движения HC-SR501, Блок питания, Микросхема контроллера коллекторного электродвигателя, ИК-пульт дистанционного управления, Радиомодуль NRF24L01, OKI 120A2, SD Card Module, Микросхема контроллера коллекторного электродвигателя, Модем M590E GSM GPRS, Часы реального времени DS 3231/DS 1307, Mini 360 на схеме LM2596, L293D, Инфракрасные датчики расстояния, Часы реального времени, HC-SR501, блок питания Mini 360 на схеме LM2596, Контроллер L298N, HC-SR501, GSM GPRS, Модем M590E GSM GPRS, Часы реального времени DS 3231/DS 1307, Модуль Wi-Fi ESP8266-12E, Card Module, Блок питания, Mini 360, L293D, блок питания Mini 360 на схеме LM2596, Радиомодуль, ИК-пульт дистанционного управления, ИК-пульт, Ethernet shield, Микросхема контроллера коллекторного электродвигателя, Микросхема контроллера коллекторного электродвигателя, ИК-пульт дистанционного управления, SD Card Module, Радиомодуль NRF24L01, двигатель OKI, L293D, Шаговый двигатель, Блок питания, L293D, блок питания Mini 360 на схеме LM2596, Карта памяти SD, Ethernet shield, датчик движения HC-SR501, Модуль Wi-Fi ESP8266-12E, Шаговый двигатель OKI 120A2, Шаговый двигатель,

Ультразвуковые дальномеры HC-SR04

Познакомимся с датчиками расстояния, которые пригодятся в проектах, рассматриваемых в следующих главах. Ультразвуковой дальномер HC-SR04 - это помещенные на одну плату приемник и передатчик ультразвукового сигнала. Кроме самих приемника и передатчика на плате находится еще и необходимая обвязка, чтобы сделать работу с этим датчиком простой и непринужденной.



Датчик обладает низким энергопотреблением, что также является немаловажным преимуществом в случае с мобильными роботами, не привязанными к розетке. Питается датчик HC-SR04 от 5 В, что тоже удобно при подключении его к Arduino.

Характеристики ультразвукового дальномера HC-SR04:

Измеряемый диапазон - от 2-х до 500 см;

Точность - 0,3 см;

Угол обзора - < 15 °;

Напряжение питания - 5 В.

Датчик имеет 4 вывода стандарта 2,54 мм:

VCC - питание +5 В;

Trig (T) - вывод входного сигнала;

Echo (R) - вывод выходного сигнала;

GND - земля.

Проверка работы датчика

Залить программу

Sketch code

/* Скетч с библиотекой NewPing, которая может использоваться и для датчика HC-SR04

приведенного здесь SRF06 и позволяет подключать ульразвуковые датчики

с помощью одного пина на Arduino. Можно дополнительно подключить конденсатор на 0.1 мкФ к пинам Эхо и Триггер на датчике.*/

#include

#define TRIGGER_PIN 12 // Arduino pin tied to trigger pin on the ultrasonic sensor.
#define ECHO_PIN 11 // Arduino pin tied to echo pin on the ultrasonic sensor.
#define MAX_DISTANCE 200 // Максимальное расстояние, которое мы контролируем (в сантиметрах). Максимальное расстояние подобных датчиков находится в диапазоне 400-500см.

NewPing sonar(TRIGGER_PIN, ECHO_PIN, MAX_DISTANCE); // Настройка пинов и максимального расстояния

void setup() {
Serial.begin(115200); // Открытие серийного протокола с частотой передачи данных 115200 бит/сек.
}

void loop() {
delay(500); // Задержка в 500 миллисекунд между генерацией волн. 29 миллисекунд – минимально допустимая задержка.
unsigned int uS = sonar.ping(); // Генерация сигнала, получение времени в микросекундах (uS).
Serial.print("Ping: ");
Serial.print(uS / US_ROUNDTRIP_CM); // Преобразование времени в расстояние и отображение результата (0 соответствует выходу за допустимый диапазон)
Serial.println("cm");
}

Открыть монитор порта

Принцип работы ультразвукового дальномера HC-SR04

В составе дальномера имеются два пьезоэлемента: один работает как излучатель сигнала, другой - как приемник. Излучатель генерирует сигнал, который, отразившись от препятствия, попадает на приемник. Измерив время, за которое сигнал проходит до объекта и обратно, можно оценить расстояние.

Последовательность действий следующая:

  1. Подаем импульс продолжительностью 10 мкс на вывод Trig.
  2. Внутри дальномера входной импульс преобразуется в 8 импульсов частотой 40 кГц и посылается вперед через излучатель T .
  3. Дойдя до препятствия, посланные импульсы отражаются и принимаются приемником R , в результате получаем выходной сигнал на выводе Echo.
  4. Непосредственно на стороне контроллера переводим полученный сигнал в расстояние по формуле:

Ширина импульса (мкс) / 58 = дистанция (см);

Ширина импульса (мкс) / 148 = дистанция (дюйм).

Библиотека Ultrasonic

Для работы Arduino с датчиком HC-SR04 имеется готовая библиотека - Ultrasonic. Конструктор Ultrasonic принимает два параметра: номера пинов, к которым подключены выводы Trig и Echo соответственно:

Ultrasonic ultrasonic(12,13);

здесь вывод датчика Trig подключен к 12-му пину Arduino, а Echo - к 13-му.

Библиотека имеет один метод Ranging, в качестве параметра которому задается, во что пересчитывать расстояние до объекта: в сантиметры или в дюймы:

#define CM 1

#define INC 0

Таким образом строчка ultrasonic.Randing(CM)вернет расстояние до объекта (типа long) в сантиметрах.

Файлы библиотеки вы можете найти в папке libraries/Ultrasonic сопровождающего книгу электронного архива. Для использования библиотеки в своих проектах поместим ее в папку libraries каталога установки Arduino.

Скетч, выдающий в последовательный порт расстояние до объекта в сантиметрах, представлен в примере.

Sketch code

#include "Ultrasonic.h"

// sensor connected to:

// Trig - 12, Echo - 13 Ultrasonic ultrasonic(12, 13);

Serial.begin(9600);

float dist_cm = ultrasonic.Ranging(CM); Serial.println(dist_cm);

Подключение датчика HC–SR04 к Arduino

Ультразвуковой датчик HC–SR04 определяет расстояние и выводит полученные значения в окно серийного монитора в среде Arduino IDE.

Небольшое примечание: в свободном доступе существует отличная библиотека NewPing , которая еще больше облегчает использование HC–SR04, пример ее использование тоже приведен ниже. // Генерируем короткий LOW импульс, чтобы обеспечить «чистый» импульс HIGH:

digitalWrite(trigPin, LOW);

delayMicroseconds(5);

digitalWrite(trigPin, HIGH);

delayMicroseconds(10);

digitalWrite(trigPin, LOW);

// Считываем данные с ультразвукового датчика: значение HIGH, которое

// зависит от длительности (в микросекундах) между отправкой

// акустической волны и ее обратном приеме на эхолокаторе.

pinMode(echoPin, INPUT);

duration = pulseIn(echoPin, HIGH);

// преобразование времени в расстояние

cm = (duration/2) / 29.1;

inches = (duration/2) / 74;

Serial.print(inches);

Serial.print("in, ");

Serial.print(cm);

Serial.print("cm");

Serial.println();

Sketch code

#include

#define TRIGGER_PIN 12

#define ECHO_PIN 11

#define MAX_DISTANCE 200

NewPing sonar(TRIGGER_PIN, ECHO_PIN, MAX_DISTANCE); // Настройка пинов и максимального расстояния.

Serial.begin(9600);

unsigned int uS = sonar.ping_cm();

Serial.print(uS);

Serial.println(“cm”);

Если HC-SR04 не считывает сигнал эхо, выходной сигнал никогда не преобразуется в LOW. Датчики Devantec и Parallax обеспечивают время задержки 36 миллисекунд 28 миллисекунд соответственно. Если вы используете скетч, приведенный выше, программа «зависнет» на 1 секунду. Поэтому желательно указывать параметр задержки.

Датчик HC-SR04 плохо работает при измерении расстояний более 10 футов. Время возврата импульса составляет около 20 миллисекунд, так что рекомендуется в таких случаях выставлять время задержки более 20, напрмер, 25 или 30 миллисекунд.

Можно подключить ультразвуковой датчик расстояния HC-SR04 лишь к одному пину Arduino. Для этого необходимо между пинами Триггера и Эхо установить резистор на 2.2 кОм и подключить к Arduino только пин Триггера.

Для измерения расстояния до объектов, можно воспользоваться ультразвуковым дальномером HC-SR04, который работает по принципу локатора, как у летучих мышей. С помощью подобного датчика можно конструировать различных роботов, которые будут объезжать препятствия, собирать схемы автоматического включения освещения либо другой нагрузки, собирать ультразвуковую охранную систему. Дальномер HC-SR04 представляем из себя готовый модуль, который можно подключать к различным микроконтроллерам, свои примеры буду проводить совместно с китайским аналогом Arduino UNO.

На лицевой стороне датчика находятся два сенсора, передающий (T) и принимающий (R). Передающий сенсор генерирует звуковые импульсы с частотой 40 кГц. Достигнув препятствия, импульс отражается и улавливает принимающим сенсором. С достаточно высокой точностью можно определить расстоянию до объекта, которое может составлять от 2 см до 4 м. На работу датчиков не влияет солнечный свет и цвет объекта.

На обратной стороне датчика находится электроника. Микросхема MAX3232 - управляет передающим сенсором. Операционный усилитель LM324 усиливает сигнал, полученный с принимающего сенсора.

Для подключения к микроконтроллеру, используется 4 пина:

Vcc – подключается к пину 5V Arduino.
Trig – цифровой вход, на него подаётся логическая единица, длительностью 10 мкс. Затем датчик передаёт 8 циклов ультразвукового сигнала на частоте 40 кГц. Когда будет получен отраженный сигнал, будет рассчитано расстояние до объекта.
Echo – цифровой выход. На него будет подана логическая единица, после завершения расчётов. Время подачи логической единицы, пропорционально измеренному расстоянию.
Trig и Echo подключаются к цифровым выводам Arduino, к каким именно, задаётся в скетче.
Gnd – соединяется с соответствующим пином платы Arduino.

Схема подключения HC-SR04 к Arduino, на примере китайского аналога Uno.

Запишем в Ардуино скетч №1 , который будет изменять расстояние до объекта. В примерах, пин «Trig » подключен ко 2 пину Uno, а пин «Echo » на 3 пин.

int TrigPin = 2;//пин Trig подключаем ко 2-му пину Arduino.
int EchoPin = 3;//пин Echo подключаем ко 3-му пину Arduino.

void setup() {
Serial.begin (9600);//Задаём скорость com-порта.
pinMode(TrigPin, OUTPUT);//Устанавливаем пин Trig как выход.
pinMode(EchoPin, INPUT);//Устанавливаем пин Echo как вход.
}
void loop() {
int distance, duration;
.
.
.
.
Serial.print(duration);//Выводим значение дистанции на дисплей.
Serial.println(" cm");
delay(1000);//Ждём 1000 милисекунд.
}

Строка «duration = duration/29/2; » вычисляет расстояние в «см », если нужно производить расчёты в дюймах, строка должна выглядеть так: «duration = duration/74/2; ».

Результат выполнения скетча будет отображаться в окне монитора последовательного порта.

Скетч №2 включает встроенный на плате Uno светодиод, если расстояние до объекта менее 50 см. Светодиод висит на 13 пине.

int TrigPin = 2;
int EchoPin = 3;
int LedPin = 13;

void setup() {
Serial.begin (9600);
pinMode(TrigPin, OUTPUT);
pinMode(EchoPin, INPUT);
pinMode(LedPin, OUTPUT);
}
void loop() {
int distance, duration;
digitalWrite(TrigPin, HIGH);//На пин Trig подаётся логическая единица.
delayMicroseconds(10);//Удерживается это состояние 10 микросекунд
digitalWrite(TrigPin, LOW);//убирается это состояние
duration = pulseIn(EchoPin, HIGH);//Значение с пина Echo, считывается и записывается в значение duration
duration = duration/29/2;//Подсчёт дистанции. Скорость звука 340 м/с или 29 микросекунд на сантиметр
Serial.print(duration);
Serial.println(" cm");
if (duration<50) // Если расстояние менее 50 сантиметром
{
digitalWrite(LedPin, HIGH); // Светодиод горит
}
else
{
digitalWrite(LedPin, LOW); // иначе не горит
}
delay(1000);
}

Если вместо светодиода, подключить лампу накаливания, как это описано в статье « », у нас получится простая система автоматического освещения. Разместив подобную конструкцию в каком то помещении, при попадании посетителя в зону действия дальномера, в помещении автоматически включится свет. Ток покоя дальномера составляет менее 2 мА.

В скетче №3 заменим светодиод на пьезоэлемент (пищалка, зуммер), которая будет издавать звук, если расстояние до объекта менее 50 см. Таким образом у нас получается простой звуковой радар или звуковая сигнализация.

Подобные «пищалки» применяются в компьютерах для оповещения BIOS, а так же в детских игрушках со звуком.

Схема подключения простая, чёрный провод зуммера подключаем к пину GND ардуино, красный к любому свободному цифровому пину, с функцией ШИМ (3,5,6,9,10,11,13). В примере это пин 5. Подключать пьезоизлучатель будем с помощью функции analogWrite() . С этой функцией нельзя изменять тональность звука, звук будет постоянно на частоте около 980 Гц.

int TrigPin = 2;
int EchoPin = 3;
int BeepPin = 5;

void setup() {
Serial.begin (9600);
pinMode(TrigPin, OUTPUT);
pinMode(EchoPin, INPUT);
pinMode(BeepPin, OUTPUT);
}
void loop() {
int distance, duration;
digitalWrite(TrigPin, HIGH);//На пин Trig подаётся логическая единица.
delayMicroseconds(10);//Удерживается это состояние 10 микросекунд
digitalWrite(TrigPin, LOW);//убирается это состояние
duration = pulseIn(EchoPin, HIGH);//Значение с пина Echo, считывается и записывается в значение duration
duration = duration/29/2;//Подсчёт дистанции. Скорость звука 340 м/с или 29 микросекунд на сантиметр
Serial.print(duration);
Serial.println(" cm");
if (duration<50) // Если расстояние менее 50 сантиметром
{
analogWrite(BeepPin, 50); // включаем пьезоизлучатель
}
else
{
analogWrite(BeepPin, 0); // выключаем пьезоизлучатель
}
delay(1000);
}

Если расстояние до объекта будет менее 50 см, зуммер издаст звук.

В скетче №4 мы так же будем использовать зуммер, но только с функцией tone() , которая будет позволять менять тональность звука, при разных ситуациях.

int TrigPin = 2;
int EchoPin = 3;
int BeepPin = 5;

void setup() {
Serial.begin (9600);
pinMode(TrigPin, OUTPUT);
pinMode(EchoPin, INPUT);
pinMode(BeepPin, OUTPUT);
}
void loop() {
int distance, duration;
digitalWrite(TrigPin, HIGH);//На пин Trig подаётся логическая единица.
delayMicroseconds(10);//Удерживается это состояние 10 микросекунд
digitalWrite(TrigPin, LOW);//убирается это состояние
duration = pulseIn(EchoPin, HIGH);//Значение с пина Echo, считывается и записывается в значение duration
duration = duration/29/2;//Подсчёт дистанции. Скорость звука 340 м/с или 29 микросекунд на сантиметр
Serial.print(duration);
Serial.println(" cm");
if (duration<50) // Если расстояние менее 50 сантиметром
{
}
else
{
noTone(BeepPin); // выключаем пьезоизлучатель
}
delay(1000);
}

В строке " tone(BeepPin, 500) ;" параметром "500 " задаётся частота звука - 500 Гц. Этот параметр можно выставлять от 31 Гц и до пределов, которыми ограничены параметры пьезоизлучателя и человеческого слуха. Данный скетч будет повторять эксперимент скетча №3, только с использованием функции tone(), которая будет устанавливать частоту звука.

В скетче №5 попробуем изменять тональность звука. При расстоянии более 50 см, будет издаваться звук, частотою 1000Гц. Если расстояние до объекта будет менее 50 см, звук изменит частоту на 500Гц.

int TrigPin = 2;
int EchoPin = 3;
int BeepPin = 5;

void setup() {
Serial.begin (9600);
pinMode(TrigPin, OUTPUT);
pinMode(EchoPin, INPUT);
pinMode(BeepPin, OUTPUT);
}
void loop() {
int distance, duration;
digitalWrite(TrigPin, HIGH);//На пин Trig подаётся логическая единица.
delayMicroseconds(10);//Удерживается это состояние 10 микросекунд
digitalWrite(TrigPin, LOW);//убирается это состояние
duration = pulseIn(EchoPin, HIGH);//Значение с пина Echo, считывается и записывается в значение duration
duration = duration/29/2;//Подсчёт дистанции. Скорость звука 340 м/с или 29 микросекунд на сантиметр
Serial.print(duration);
Serial.println(" cm");
if (duration<50) // Если расстояние менее 50 сантиметром
{
tone(BeepPin, 500); // включаем пьезоизлучатель c частотой 500 Гц
}
else
{
tone(BeepPin, 1000); // включаем пьезоизлучатель c частотой 1000 Гц
}

Используя функцию tone() нужно обратить внимание на то, что она мешает использовать ШИМ на пинах 3 и 11 Ардуино, (на платформу Mega это не распространяется). Допустим, в моих примерах функция tone() вызывается на 5 пине, но она может мешать работе ШИМ на выводах 3 и 11, это нужно учитывать при построении дальнейших своих устройств. Ещё один момент, с функцией tone() нельзя одновременно использовать более одного пьезоизлучателя. Для того что бы включить звук на втором пьезоизлучателе, первый обязательно нужно отключить функцией noTone() .

В процессе данных экспериментах выяснил, что более точное определение расстояния производится с расстоянием до 2 м. Так же, дальномер до исследуемого объекта нужно располагать под прямым углом, поскольку эффективный угол наблюдения порядка 15°.

Дальномер — это устройство для измерения расстояния до некоторого предмета. Дальномер помогает роботам в разных ситуациях. Простой колесный робот может использовать этот прибор для обнаружения препятствий. Летающий дрон использует дальномер для баражирования над землей на заданной высоте. С помощью дальномера можно даже построить карту помещения, применив специальный алгоритм SLAM.

1. Принцип действия

На этот раз мы разберем работу одного из самых популярных датчиков — ультразвукового (УЗ) дальномера. Существует много разных модификаций подобных устройств, но все они работают по принципу измерения времени прохождения отраженного звука. То есть датчик отправляет звуковой сигнал в заданном направлении, затем ловит отраженное эхо и вычисляет время полета звука от датчика до препятствия и обратно. Из школьного курса физики мы знаем, что скорость звука в некоторой среде величина постоянная, но зависящая от плотности среды. Зная скорость звука в воздухе и время полета звука до цели, мы можем рассчитать пройденное звуком расстояние по формуле: s = v*t где v — скорость звука в м/с, а t — время в секундах. Скорость звука в воздухе, кстати, равна 340.29 м/с. Чтобы справиться со своей задачей, дальномер имеет две важные конструктивные особенности. Во-первых, чтобы звук хорошо отражался от препятствий, датчик испускает ультразвук с частотой 40 кГц. Для этого в датчике имеется пьезокерамический излучатель, который способен генерировать звук такой высокой частоты. Во-вторых, излучатель устроен таким образом, что звук распространяется не во все стороны (как это бывает у обычных динамиков), а в узком направлении. На рисунке представлена диаграмма направленности типичного УЗ дальномера. Как видно на диаграмме, угол обзора самого простого УЗ дальномера составляет примерно 50-60 градусов. Для типичного варианта использования, когда датчик детектирует препятствия перед собой, такой угол обзора вполне пригоден. Ультразвук сможет обнаружить даже ножку стула, тогда как лазерный дальномер, к примеру, может её не заметить. Если же мы решим сканировать окружающее пространство, вращая дальномер по кругу как радар, УЗ дальномер даст нам очень неточную и шумную картину. Для таких целей лучше использовать как раз лазерный дальномер. Также следует отметить два серьезных недостатка УЗ дальномера. Первый заключается в том, что поверхности имеющие пористую структуру хорошо поглощают ультразвук, и датчик не может измерить расстояние до них. Например, если мы задумаем измерить расстояние от мультикоптера до поверхности поля с высокой травой, то скорее всего получим очень нечеткие данные. Такие же проблемы нас ждут при измерении дистанции до стены покрытой поролоном. Второй недостаток связан со скоростью звуковой волны. Эта скорость недостаточно высока, чтобы сделать процесс измерения более частым. Допустим, перед роботом есть препятствие на удалении 4 метра. Чтобы звук слетал туда и обратно, потребуется целых 24 мс. Следует 7 раз отмерить, прежде чем ставить УЗ дальномер на летающих роботов.

2. Ультразвуковой дальномер HC-SR04

В этом уроке мы будем работать с датчиком HC-SR04 и контроллером Ардуино Уно. Этот популярный дальномер умеет измерять расстояние от 1-2 см до 4-6 метров. При этом, точность измерения составляет 0.5 — 1 см. Встречаются разные версии одного и того же HC-SR04. Одни работают лучше, другие хуже. Отличить их можно по рисунку платы на обратной стороне. Версия, которая работает хорошо выглядит так:

А вот версия, которая может давать сбои:

3. Подключение HC-SR04

Датчик HC-SR04 имеет четыре вывода. Кроме земли (Gnd) и питания (Vcc) еще есть Trig и Echo. Оба этих вывода цифровые, так что подключаем из к любым выводам Ардуино Уно:
HC-SR04 GND VCC Trig Echo
Arduino Uno GND +5V 3 2
Принципиальная схема устройства Внешний вид макета

4. Программа

Итак, попробуем приказать датчику отправить зондирующий ультразвуковой импульс, а затем зафиксируем его возвращение. Посмотрим как выглядит временная диаграмма работы HC-SR04.
На диаграмме видно, что для начала измерения нам необходимо сгенерировать на выводе Trig положительный импульс длиной 10 мкс. Вслед за этим, датчик выпустит серию из 8 импульсов и поднимет уровень на выводе Echo , перейдя при этом в режим ожидания отраженного сигнала. Как только дальномер почувствует, что звук вернулся, он завершит положительный импульс на Echo . Получается, что нам нужно сделать всего две вещи: создать импульс на Trig для начала измерения, и замерить длину импульса на Echo, чтобы потом вычислить дистанцию по нехитрой формуле. Делаем. int echoPin = 2; int trigPin = 3; void setup() { Serial.begin (9600); pinMode(trigPin, OUTPUT); pinMode(echoPin, INPUT); } void loop() { int duration, cm; digitalWrite(trigPin, LOW); delayMicroseconds(2); digitalWrite(trigPin, HIGH); delayMicroseconds(10); digitalWrite(trigPin, LOW); duration = pulseIn(echoPin, HIGH); cm = duration / 58; Serial.print(cm); Serial.println(" cm"); delay(100); } Функция pulseIn замеряет длину положительного импульса на ноге echoPin в микросекундах. В программе мы записываем время полета звука в переменную duration. Как мы уже выяснили ранее, нам потребуется умножить время на скорость звука: s = duration * v = duration * 340 м/с Переводим скорость звука из м/с в см/мкс: s = duration * 0.034 м/мкс Для удобства преобразуем десятичную дробь в обыкновенную: s = duration * 1/29 = duration / 29 А теперь вспомним, что звук прошел два искомых расстояния: до цели и обратно. Поделим всё на 2: s = duration / 58 Теперь мы знаем откуда взялось число 58 в программе! Загружаем программу на Ардуино Уно и открываем монитор последовательного порта. Попробуем теперь наводить датчик на разные предметы и смотреть в мониторе рассчитанное расстояние.

Задания

Теперь, когда мы умеем вычислять расстояние с помощью дальномера, сделаем несколько полезных устройств.
  1. Строительный дальномер. Программа каждые 100мс измеряет расстояние с помощью дальномера и выводит результат на символьный ЖК дисплей. Для удобства полученное устройство можно поместить в небольшой корпус и запитать от батареек.
  2. Ультразвуковая трость. Напишем программу, которая будет «пищать» зуммером с различной частотой, в зависимости от измеренного расстояния. Например, если расстояние до препятствия более трех метров — зуммер издает звук раз в пол секунды. При расстоянии 1 метр — раз в 100мс. Менее 10см — пищит постоянно.

Заключение

Ультразвуковой дальномер — простой в использовании, дешевый и точный датчик, который отлично выполняет свою функцию на тысячах роботов. Как мы выяснили из урока, у датчика есть недостатки, которые следует учитывать при постройке робота. Хорошим решением может стать совместное использование ультразвукового дальномера в паре с лазерным. В таком случае, они будут нивелировать недостатки друг друга.

В данное статье рассмотрим принцип работы ультразвукового дальномера HC-SR04.

Принцип работы ультразвукового дальномера основан на испускании ультразвука и его отражения от впереди находящихся предметов. Исходя из времени возвращения звука, по простой формуле, можно рассчитать расстояние до объекта. Дальномер HC-SR04 является самым дешевым дальномером для хоббийного использования. При малой цене обладает хорошими характеристиками, способен измерять расстояние в диапазоне от 2 до 450см.

Используемые компоненты (купить в Китае):

Принцип работы датчика можно условно разделить на 4 этапа:

1. Подаем импульс продолжительностью 10 мкс, на вывод Trig.

2. Внутри дальномера входной импульс преобразуется в 8 импульсов частотой 40 КГц и посылается вперед через "T глазик"

3. Дойдя до препятствия, посланные импульсы отражаются и принимаются "R глазиком". Получаем выходной сигнал на выводе Echo.

4. Непосредственно на стороне контроллера переводим полученный сигнал в расстояние по формуле:

ширина импульса (мкс) / 58= дистанция (см)

ширина импульса (мкс) / 148= дистанция (дюйм)

Подключение к Arduino

Модуль оборудован четырех-пиновым разъемом стандарта 2.54мм

VCC : "+" питания

TRIG (T) : вывод входного сигнала

ECHO (R) : вывод выходного сигнала (Длина сигнала зависит от расстояния объекта до датчика)

GND : "-" питания

Подключив датчик к Arduino остается только залить скетч для работы. В приведенном ниже скетче информация о расстоянии будет отсылаться в порт компьютера, а также при дистанции менее 30 сантиметров зажигать светодиод подключенный к 13 пину.

пример программного кода:

#define Trig 9 #define Echo 8 #define ledPin 13 void setup //инициируем как выход pinMode (Echo, INPUT ); //инициируем как вход pinMode (ledPin, OUTPUT ); Serial .begin (9600); /* задаем скорость общения. В нашем случае с компьютером */ } unsigned int impulseTime=0; unsigned int distance_sm=0; void loop () { digitalWrite (Trig, HIGH ); /* Подаем импульс на вход trig дальномера */ delayMicroseconds (10); // равный 10 микросекундам digitalWrite (Trig, LOW ); // Отключаем impulseTime=pulseIn (Echo, HIGH ); // Замеряем длину импульса distance_sm=impulseTime/58; Serial .println (distance_sm); // Выводим на порт if (distance_sm<30) // Если расстояние менее 30 сантиметром { digitalWrite (ledPin, HIGH ); // Светодиод горит } else { digitalWrite (ledPin, LOW ); // иначе не горит } delay (100); /* ждем 0.1 секунды, Следующий импульс может быть излучён, только после исчезновения эха от предыдущего. Это время называется периодом цикла (cycle period). Рекомендованный период между импульсами должен быть не менее 50 мс. */ }

Дополнительный пример работы:

Взаимодействие дальномера и сервопривода. Дистанция, измеряемая дальномером преобразуется в угол поворота сервопривода

Пример программного кода

//Тестировалось на Arduino IDE 1.0.1 #include #define coef 10 //(коэффициент соответствия 10 градусов на 1см) #define dead_zone 4 #define max_value 22 #define Trig 9 #define Echo 8 #define ledPin 13 #define servoPin 11 Servo myservo; void setup () { pinMode (Trig, OUTPUT ); //инициируем как выход pinMode (Echo, INPUT ); //инициируем как вход pinMode (ledPin, OUTPUT ); myservo.attach (servoPin); myservo.write (0); } unsigned int impulseTime=0; unsigned int distance_sm=0; void loop () { digitalWrite (Trig, HIGH ); /* Подаем импульс на вход trig дальномера */ delayMicroseconds (10); // равный 10 микросекундам digitalWrite (Trig, LOW ); // Отключаем impulseTime = pulseIn (Echo, HIGH ); // Замеряем длину импульса distance_sm = impulseTime/58; // Пересчитываем в сантиметры if (distance_sm >= dead_zone && distance_sm <= max_value) { myservo.write (coef * (distance_sm - dead_zone)); } else if (distance_sm < dead_zone)// если дистанция менее 4 см, серва в положении ноль градусов { myservo.write (0); } else { myservo.write (180); } delay (100); /* ждем 0.1 секунды, Следующий импульс может быть излучён, только после исчезновения эха от предыдущего. Это время называется периодом цикла (cycle period). Рекомендованный период между импульсами должен быть не менее 50 мс. */ }

Ультразвуковые датчики расстояния Ардуино очень востребованы в робототехнических проектах из-за своей относительной простоты, достаточной точности и доступности. Они могут быть использованы как приборы, помогающие объезжать препятствия, получать размеры предметов, моделировать карту помещения и сигнализировать о приближении или удалении объектов. Одним из распространенных вариантов такого устройства является датчик расстояния, в конструкцию которого входит ультразвуковой дальномер HC SR04. В этой статье мы познакомимся с принципом действия датчика расстояния, рассмотрим несколько вариантов подключения к платам Arduino, схему взаимодействия и примеры скетчей.

Способность ультразвукового датчика определять расстояние до объекта основано на принципе сонара – посылая пучок ультразвука, и получая его отражение с задержкой, устройство определяет наличие объектов и расстояние до них. Ультразвуковые сигналы, генерируемые приемником, отражаясь от препятствия, возвращаются к нему через определенный промежуток времени. Именно этот временной интервал становится характеристикой помогающей определить расстояние до объекта.

Внимание! Так как в основу принципа действия положен ультразвук, то такой датчик не подходит для определения расстояния до звукопоглощающих объектов. Оптимальными для измерения являются предметы с ровной гладкой поверхностью.

Описание датчика HC SR04

Датчик расстояния Ардуино является прибором бесконтактного типа, и обеспечивает высокоточное измерение и стабильность. Диапазон дальности его измерения составляет от 2 до 400 см. На его работу не оказывает существенного воздействия электромагнитные излучения и солнечная энергия. В комплект модуля с HC SR04 arduino также входят ресивер и трансмиттер.

Ультразвуковой дальномер HC SR04 имеет такие технические параметры:

  • Питающее напряжение 5В;
  • Рабочий параметр силы т ока – 15 мА;
  • Сила тока в пассивном состоянии < 2 мА;
  • Обзорный угол – 15°;
  • Сенсорное разрешение – 0,3 см;
  • Измерительный угол – 30°;
  • Ширина импульса – 10 -6 с.

Датчик оснащен четырьмя выводами (стандарт 2, 54 мм):

  • Контакт питания положительного типа – +5В;
  • Trig (Т) – выход сигнала входа;
  • Echo (R) – вывод сигнала выхода;
  • GND – вывод «Земля».

Где купить модуль SR04 для Ардуино

Датчик расстояния – достаточно распространенный компонент и его без труда можно найти в интернет-магазинах. Самые дешевые варианты (от 40-60 рублей за штуку), традиционно на всем известном сайте.

Модуль датчика расстояния HC-SR04 для Ардуино Еще один вариант ультразвукового сенсора HC-SR04 у надежного поставщика
Датчики расстояния SR05 Ultrasonic HC-SR05 (улучшенные характеристики) Модуль HC-SR05 HY-SRF05 для UNO R3 MEGA2560 DUE от надежного поставщика

Схема взаимодействия с Arduino

Для получения данных, необходимо выполнить такую последовательность действий:

  • Подать на выход Trig импульс длительностью 10 микросек;
  • В ультразвуковом дальномере hc sr04 подключенном к arduino произойдет преобразование сигнала в 8 импульсов с частотой 40 кГц, которые через излучатель будут посланы вперед;
  • Когда импульсы дойдут до препятствия, они отразятся от него и будут приняты приемником R, что обеспечит наличие входного сигнала на выходе Echo;
  • На стороне контроллера полученный сигнал при помощи формул следует перевести в расстояние.

При делении ширины импульса на 58.2, получим данные в сантиметрах, при делении на 148 – в дюймах.

Подключение HC SR04 к Arduino

Выполнить подключение ультразвукового датчика расстояния к плате Arduino достаточно просто. Схема подключения показана на рисунке.

Контакт земли подключаем к выводу GND на плате Arduino, выход питания соединяем с 5V. Выходы Trig и Echo подсоединяем к arduino на цифровые пины. Вариант подключения с помощью макетной платы:

Библиотека для работы с HC SR04

Для облегчения работы с датчиком расстояния HC SR04 на arduino можно использовать библиотеку NewPing. Она не имеет проблем с пинговыми доступами и добавляет некоторые новые функции.

К особенностям библиотеки можно отнести:

  • Возможность работы с различными ультразвуковыми датчиками;
  • Может работать с датчиком расстояния всего через один пин;
  • Отсутствие отставания на 1 секунду при отсутствии пинга эха;
  • Для простой коррекции ошибок есть встроенный цифровой фильтр;
  • Максимально точный расчет расстояния.

Скачать бибилотеку NewPing можно

Точность измерения расстояния датчиком HC SR04

Точность датчика зависит от нескольких факторов:

  • температуры и влажности воздуха;
  • расстояния до объекта;
  • расположения относительно датчика (согласно диаграммы излучения);
  • качества исполнения элементов модуля датчика.

В основу принципа действия любого ультразвукового датчика заложено явление отражения акустических волн, распространяющихся в воздухе. Но как известно из курса физики, скорость распространения звука в воздухе зависит от свойств этого самого воздуха (в первую очередь от температуры). Датчик же, испуская волны и замеряя время до их возврата, не догадывается, в какой именно среде они будут распространяться и берет для расчетов некоторую среднюю величину. В реальных условиях из-за фактора температуры воздуха HC-SR04 может ошибаться от 1 до 3-5 см.

Фактор расстояния до объекта важен, т.к. растет вероятность отражения от соседних предметов, к тому же и сам сигнал затухает с расстоянием.

Также для повышения точности надо правильно направить датчик: сделать так, чтобы предмет был в рамках конуса диаграммы направленности. Проще говоря, “глазки” HC-SR04 должны смотреть прямо на предмет.

Для уменьшения ошибок и погрешности измерений обычно выполняются следующие действия:

  • усредняются значения (несколько раз замеряем, убираем всплески, потом находим среднее);
  • с помощью датчиков (например, ) определяется температура и вносятся поправочные коэффициенты;
  • датчик устанавливается на серводвигатель, с помощью которого мы “поворачиваем голову”, перемещая диаграмму направленности влево или вправо.

Примеры использования датчика расстояния

Давайте рассмотрим пример простого проекта с платой Arduino Uno и датчиком расстояния HC SR04. В скетче мы будем получать значение расстояния до предметов и выводить их в монитор порта в среде Arduino IDE. Вы сможете легко изменить скетч и схему подключения, чтобы датчик сигнализировал о приближении или отдалении предмета.

Подключение датчика к ардуино

При написании скетча использовалась следующий вариант распиновки подключения датчика:

  • VCC: +5V
  • Trig – 12 пин
  • Echo – 11 пин
  • Земля (GND) – Земля (GND)

Пример скетча

Начнем работу с датчиком сразу с относительного сложного варианта – без использования внешних библиотек.

В данном скетче мы выполняем такую последовательность действий:

  • Коротким импульсом (2-5 микросекунды) переводим датчик расстояния в режим эхолокации, при котором в окружающее пространство высылаются ультразвуковые волны с частотой 40 КГц.
  • Ждем, пока датчик проанализирует отраженные сигналы и по задержке определит расстояние.
  • Получаем значение расстояния. Для этого ждем, пока HC SR04 выдаст на входе ECHO импульс, пропорциональный расстоянию. Мы определяем длительность импульса с помощью функции pulseIn, которая вернет нам время, прошедшее до изменения уровня сигнала (в нашем случае, до появления обратного фронта импульса).
  • Получив время, мы переводим его в расстояние в сантиметрах путем деления значения на константу (для датчика SR04 это 29.1 для сигнала «туда», столько же для сигнала «обратно», что в сумме даст 58.2).

Если датчик расстояния не выполняет считывание сигнала, то преобразование выходного сигнала никогда не примет значения короткого импульса – LOW. Так как у некоторых датчиков время задержки варьируется в зависимости от производителя, рекомендуется при использовании указанных скетчей выставлять его значение вручную (мы это делаем в начале цикла).

Если расстояние составляет более 3 метров, при котором HC SR04 начинает плохо работать, время задержки лучше выставлять более 20 мс, т.е. 25 или 30 мс.

#define PIN_TRIG 12 #define PIN_ECHO 11 long duration, cm; void setup() { // Инициализируем взаимодействие по последовательному порту Serial.begin (9600); //Определяем вводы и выводы pinMode(PIN_TRIG, OUTPUT); pinMode(PIN_ECHO, INPUT); } void loop() { // Сначала генерируем короткий импульс длительностью 2-5 микросекунд. digitalWrite(PIN_TRIG, LOW); delayMicroseconds(5); digitalWrite(PIN_TRIG, HIGH); // Выставив высокий уровень сигнала, ждем около 10 микросекунд. В этот момент датчик будет посылать сигналы с частотой 40 КГц. delayMicroseconds(10); digitalWrite(PIN_TRIG, LOW); // Время задержки акустического сигнала на эхолокаторе. duration = pulseIn(PIN_ECHO, HIGH); // Теперь осталось преобразовать время в расстояние cm = (duration / 2) / 29.1; Serial.print("Расстояние до объекта: "); Serial.print(cm); Serial.println(" см."); // Задержка между измерениями для корректной работы скеча delay(250); }

Скетч с использованием библиотеки NewPing

Теперь давайте рассмотрим вариант скетча с использованием библиотеки NewPing. Код существенно упростится, т.к. все описанные ранее действия спрятаны внутри библиотеки. Все, что нам нужно сделать – создать объект класса NewPing, указав пины, с помощью которых мы подключаем датчик расстояния и использовать методы объекта. В нашем примере для получения расстояния в сантиметрах нужно использовать ping_cm().

#include #define PIN_TRIG 12 #define PIN_ECHO 11 #define MAX_DISTANCE 200 // Константа для определения максимального расстояния, которое мы будем считать корректным. // Создаем объект, методами которого будем затем пользоваться для получения расстояния. // В качестве параметров передаем номера пинов, к которым подключены выходы ECHO и TRIG датчика NewPing sonar(PIN_TRIG, PIN_ECHO, MAX_DISTANCE); void setup() { // Инициализируем взаимодействие по последовательному порту на скорости 9600 Serial.begin(9600); } void loop() { // Стартовая задержка, необходимая для корректной работы. delay(50); // Получаем значение от датчика расстояния и сохраняем его в переменную unsigned int distance = sonar.ping_cm(); // Печатаем расстояние в мониторе порта Serial.print(distance); Serial.println("см"); }

Пример подключения ультразвукового дальномера HC SR04 с одним пином

Подключение HC-SR04 к Arduino может быть выполнено посредством использования одного пина. Такой вариант пригодится, если вы работаете с большим проектом и вам не хватает свободных пинов. Для подключения вам нужно просто установить между контактами TRIGи ECHO резистор номиналом 2.2K и подключить к ардуино контакт TRIG.

#include #define PIN_PING 12 // Пин с Arduino соединен с пинами trigger и echo на датчике расстояния #define MAX_DISTANCE 200 // Максимальное расстояние, которое мы способны контролировать (400-500см). NewPing sonar(PIN_PING, PIN_PING, MAX_DISTANCE); // Регулировка пинов и максимального расстояния void setup() { Serial.begin(9600); // Открывается протокол с данными и частотой передачи 115200 бит/сек. } void loop() { delay(50); // Задержка в 50 мс между генерируемыми волнами. 29 мс – минимально допустимое значение unsigned int distanceSm = sonar.ping(); // Создание сигнала, получение параметра его продолжительности в мкс (uS). Serial.print("Ping: "); Serial.print(distanceSm / US_ROUNDTRIP_CM); // Пересчет параметра времени в величину расстояния и вывод результата (0 соответствует выходу за допустимый предел) Serial.println("cm"); }

Краткие выводы

Ультразвуковые датчики расстояния достаточно универсальны и точны, что позволяет их использовать для большинства любительских проектов. В статье рассмотрен крайне популярный датчик HC SR04, который легко подключается к плате ардуино (для этого следует сразу предусмотреть два свободных пина, но есть вариант подключения и с одним пином). Для работы с датчиком существуют несколько бесплатных библиотек (в статье рассмотрена лишь одна из них, NewPing), но можно обойтись и без них – алгоритм взаимодействия с внутренним контроллером датчика достаточно прост, мы показали его в этой статье.

Исходя из собственного опыта, можно утверждать, что датчик HC-SR04 показывает точность в пределах одного сантиметра на расстояниях от 10 см до 2 м. На более коротких и дальних дистанциях возможно появление сильных помех, что сильно зависит от окружающих предметов и способа использования. Но в большинстве случаев HC-SR04 отлично справлялся со своей работой.