Предмет молекулярной физики и термодинамики. Статистическая физика и термодинамика. Основные положения МКТгазов. Термодинамический и статистический методы. Три начала термодинамики Статистическая физика и термодинамика основные понятия

Основные понятия

Основные знания.

Статистическая интерпретация понятий: внутренняя энергия, работа подсистемы, количество теплоты; обоснование первого начала термодинамики с помощью канонического распределения Гиббса; статистическое обоснование третьего термодинамики; свойства макросистем при ; физический смысл энтропии; условия устойчивости термодинамической системы.

Основные умения.

Самостоятельно работать с рекомендованной литературой; определять понятия из п.1; уметь логично обосновывать с использованием математического аппарата элементы знаний из п.2; по известной статистической сумме (статистическому интегралу) определять внутреннюю энергию системы, свободную энергию Гельмгольца, свободную энергию Гиббса, энтропию, уравнение состояния и т.п.; определять направление эволюции открытой системы при постоянных и , постоянных и , постоянных и .

Внутренняя энергия макроскопической системы.

Основой статистической термодинамики является следующее утверждение: внутренняя энергия макроскопического тела тождественна её средней энергии , вычисленной по законам статистической физики:

(2.2.1)

Подставляя каноническое распределение Гиббса, получаем:

(2.2.2)

Числитель правой части равенства (2.2.2) представляет собой производную от Z по :

.

Поэтому выражение (2.2.2) можно переписать в более компактном виде:

(2.2.3)

Таким образом, для нахождения внутренней энергии системы достаточно знать её статистическую сумму Z .

Второе начало термодинамики и «стрела времени».

Энтропия изолированной системы в неравновесном состоянии.

Если система находится в равновесном состоянии или участвует в квазистатическом процессе, её энтропия с молекулярной точки зрения определяется числом микросостояний, соответствующих данному макросостоянию системы с энергией, равной среднему значению:

.

Энтропия изолированной системы в неравновесном состоянии определяется числом микросостояний, соответствующих данному макросостоянию системы:

причём .

Третий закон термодинамики.

Третий закон термодинамики характеризует свойства термодинамической системы при очень низких температурах (). Пусть наименьшая возможная энергия системы – , а энергия возбуждённых состояний – . При очень низкой температуре средняя энергия теплового движения . Следовательно, энергии теплового движения недостаточно для перехода системы в возбуждённое состояние . Энтропия , где – число состояний системы с энергией (то есть в основном состоянии). Поэтому равно единице, при наличии вырождения, небольшому числу (кратности вырождения). Следовательно энтропию системы, и в том и другом случае можно считать равной нулю ( – очень маленькое число). Поскольку энтропия определяется с точностью до произвольной постоянной иногда это утверждение формулируют так: при , . Значение этой постоянной не зависит от давления, объёма и других параметров, характеризующих состояние системы.

Вопросы для самопроверки.

1. Сформулировать постулаты феноменологической термодинамики.

2. Сформулировать второй принцип термодинамики.

3. В чём заключается мысленный эксперимент Нарликара?

4. Доказать, что энтропия изолированной системы при неравновесных процессах возрастает.

5. Понятие внутренней энергии.

6. При каких условиях (в каких случаях) состояние системы можно рассматривать как равновесное?

7. Какой процесс называется обратимым и необратимым?

8. Что такое термодинамический потенциал?

9. Записать термодинамические функции.

10. Объяснить получение низких температур при адиабатическом размагничивании.

11. Понятие об отрицательной температуре.

12. Запишите термодинамические параметры через сумму состояний.

13. Записать основное термодинамическое равенство системы с переменным числом частиц.

14. Объяснить физический смысл химического потенциала.


Задачи.

1. Доказать основное термодинамическое равенство.

2. Найти выражение термодинамического потенциала свободной энергии F через интеграл состояния Z системы.

3. Найти выражение энтропии S через интеграл состояний Z системы.

4. Найти зависимость энтропия S идеального одноатомного газа из N частиц от энергии Е и объёма V .

5. Вывести основное термодинамическое равенство для системы с переменным числом частиц.

6. Вывести большое каноническое распределение.

7. Вычислить свободную энергию одноатомного идеального газа.

II. Статистическая термодинамика.

Основные понятия

Квазистатический процесс; нулевой постулат феноменологической термодинамики; первый постулат феноменологической термодинамики; второй постулат феноменологической термодинамики; третий постулат феноменологической термодинамики; понятие внутренней энергии; функция состояния; функция процесса; основное термодинамическое равенство; понятие энтропии для изолированной неравновесной системы; понятие локальной неустойчивости фазовых траекторий (траекторий частиц); системы с перемешиванием; обратимый процесс; необратимый процесс; термодинамический потенциал; свободная энергия Гельмгольца; свободная энергия Гиббса; соотношения Максвелла; обобщённые координаты и обобщённые силы; принципы экстремума в термодинамике; принцип Ле-Шателье-Брауна.

Материал из FFWiki.

Предмет Термодинамика и статистическая физика Семестр 7-8 Тип лекция, семинар Отчётность экзамен Кафедра Кафедра квантовой статистики и теории поля

О предмете

Термодинамика и статфизика. Первый вопрос, когда видишь этот предмет в расписании: как так? Действительно, на 1 курсе уже рассказывали молекулярную физику, где были и все 3 начала термодинамики, и потенциалы, и распределение Максвелла. Казалось бы, что еще нового может быть в природе?

Оказывается, то, что было на 1 курсе - детский лепет по сравнению с настоящей термодинамикой и статфизикой. Той, с помощью которой Ландау посчитал жидкий гелий и получил Нобелевскую премию.

Важно не попасть впросак, подумав, что раз на 1 лекции рассказывают то, что вы знали еще в школе, то и дальше так будет. Уже с середины сентября вы станете свидетелями потрясающих фокусов-подгонов с частными производными, а к концу осеннего семестра пойдут весьма зубодробительные темы по статфизике:

  • Расчет стат.сумм и распределений Гиббса
  • Квантовые газы - ферми- и бозе- газы с разных условиях
  • Фазовые переходы и их свойства
  • Неидеальные газы - цепочки Боголюбова, модели плазмы и электролитов

Автор сих слов хотя и смог подготовиться на отл за 4 дня перед экзаменами, но весьма в этом раскаивается и не советует никому повторять такое насилие над своим мозгом:) Задачи и вопросы к экзамену известны с начала года и очень полезно подготовить часть материала заранее.

В весеннем семестре есть как простые, так и сложные темы. Например, теория для броуновского движения выписывается весьма легко. А вот в конце курса идут разнообразные кинетические уравнения, с которыми разобраться гораздо сложнее.

Экзамен

Экзамен осенью проходит весьма прилично, списывать особо не дают. Преподаватели в большинстве своем не валят, но и халявы особой не замечено. Нужно знать теормин. В диплом идет оценка за экзамен весной. Весенний экзамен по своему материалу сложнее осеннего, но принимают обычно более лояльно. Однако теормин также следует знать хорошо.

В билете и осенью, и весной находится 2 теоретических вопроса и одна задача.

Будьте аккуратны на статах, несколько человек (число варьируется от 2 до 10!) регулярно заканчивают учебу несдачей этого экзамена. И это не кто попало, а прожжёные четверокурсники.

Материалы

Осенний семестр

Весенний семестр

  • Ответы на вопросы к экзамену, теория (pdf) - аккуратно набранные на компьютеры ответы на теоретические вопросы экзамена.
  • - решения задач
  • Решения задач к экзамену(pdf) - еще решения задач

Литература

Задачники

  • Задания по термодинамике и статистической физике для студентов 4-го курса физического факультета МГУ(осенний семестр - теория равновесных систем) (pdf)

Статистическая физика и термодинамика

Статистический и термодинамический методы исследования . Молекулярная физика и термодинамика - разделы физики, в которых изучаются макроскопические процессы в телах, связанные с огромным числом содержащихся в телах атомов и молекул. Для исследования этих процессов применяют два качественно различных и взаимно допол­няющих друг друга метода: статистический (молекулярно-кинетический ) и термодинами­ческий . Первый лежит в основе молекулярной физики, второй - термодинамики.

Молекулярная физика - раздел физики, изучающий строение и свойства вещества исходя из молекулярно-кинетических представлений, основывающихся на том, что все тела состоят из молекул, находящихся в непрерывном хаотическом движении.

Идея об атомном строении вещества высказана древнегреческим философом Демо­критом (460-370 до н. э.). Атомистика возрождается вновь лишь в XVII в. и развива­ется в работах, взгляды которого на строение вещества и тепловые явления были близки к современным. Строгое развитие молекулярной теории относит­ся к середине XIX в. и связано с работами немецкого физика Р. Клаузиуса (1822-1888), Дж. Максвелла и Л. Больцмана.

Процессы, изучаемые молекулярной физикой, являются результатом совокупного действия огромного числа молекул. Законы поведения огромного числа молекул, являясь статистическими закономерностями, изучаются с помощью статистического метода . Этот метод основан на том, что свойства макроскопической системы в конеч­ном счете определяются свойствами частиц системы, особенностями их движения и усредненными значениями динамических характеристик этих частиц (скорости, энер­гии и т. д.). Например, температура тела определяется скоростью хаотического движе­ния его молекул, но так как в любой момент времени разные молекулы имеют различные скорости, то она может быть выражена только через среднее значение скорости движения молекул. Нельзя говорить о температуре одной молекулы. Таким образом, макроскопические характеристики тел имеют физический смысл лишь в слу­чае большого числа молекул.

Термодинамика - раздел физики, изучающий общие свойства макроскопических систем, находящихся в состоянии термодинамического равновесия, и процессы перехо­да между этими состояниями. Термодинамика не рассматривает микропроцессы, кото­рые лежат в основе этих превращений. Этим термодинамический метод отличается от статистического. Термодинамика базируется на двух началах - фундаментальных за­конах, установленных в результате обобщения опытных данных.

Область применения термодинамики значительно шире, чем молекулярно-кинетической теории, ибо нет таких областей физики и химии, в которых нельзя было бы пользоваться термодинамическим методом. Однако, с другой стороны, термодинами­ческий метод несколько ограничен: термодинамика ничего не говорит о микроскопи­ческом строении вещества, о механизме явлений, а лишь устанавливает связи между макроскопическими свойствами вещества. Молекулярно-кинетическая теория и термо­динамика взаимно дополняют друг друга, образуя единое целое, но отличаясь различ­ными методами исследования.

Основные постулаты молекулярно-кинетической теории (МКТ)

1. Все тела в природе состоят из огромного количества мельчайших частиц (атомов и молекул).

2. Эти частицы находятся в непрерывном хаотическом (беспорядочном) движении.

3. Движение частиц связано с температурой тела, поэтому оно называется тепловым движением .

4. Частицы взаимодействуют друг с другом.

Доказательства справедливости МКТ: диффузия веществ, броуновское движение, теплопроводность.

Физические величины, использующиеся для описания процессов в молекулярной физике делят на два класса:

микропараметры – величины, описывающие поведения отдельных частиц (масса атома (молекулы), скорость, импульс, кинетическая энергия отдельных частиц);
макропараметры – величины, не сводимые к отдельным частицам, но характеризующие свойства вещества в целом. Значения макропараметров определяются результатом одновременного действия огромного количества частиц. Макропараметры – это температура, давление, концентрация и т. п.

Температура - одно из основных понятий, играющих важную роль не только в термодинамике, но и в физике в целом. Температура - физическая величина, харак­теризующая состояние термодинамического равновесия макроскопической системы. В соответствии с решением XI Генеральной конференции по мерам и весам (1960) в настоящее время можно применять только две температурные шкалы - термодина­мическую и Международную практическую , градуированные соответственно в кельвинах (К) и в градусах Цельсия (°С).

В термодинамической шкале температура замерзания воды равна 273,15 К (при том же

давлении, что и в Международной практической шкале), поэтому, по определению, термодинамическая температура и температура по Между­народной практической

шкале связаны соотношением

Т = 273,15 + t .

Температура T = 0 К называется нулем кельвин. Анализ различных процессов показывает, что 0 К недостижим, хотя приближение к нему сколь угодно близко возможно. 0 К – это температура, при которой теоретически должно прекратиться всякое тепловое движение частиц вещества.

В молекулярной физике выводится связь между макропараметрами и микропараметрами. Например, давление идеального газа может быть выражено формулой:

position:relative; top:5.0pt"> - масса одной молекулы, - концентрация, font-size: 10.0pt">Из основного уравнения МКТ можно получить удобное для практического использования уравнение:

font-size: 10.0pt">Идеальный газ – это идеализированная модель газа, в которой считают, что:

1. собственный объем молекул газа пренебрежимо мал по сравнению с объемом сосуда;

2. между молекулами отсутствуют силы взаимодействия (притяжения и отталкивания на расстоянии;

3. столкновения молекул между собой и со стенками сосуда абсолютно упругие.

Идеальный газ – это упрощенная теоретическая модель газа. Но, состояние многих газов при определенных условиях могут быть описаны этим уравнением.

Для описания состояния реальных газов в уравнение состояния необходимо ввести поправки. Наличие сил отталкивания, которые проти­водействуют проникновению в занятый молекулой объем других молекул, сводится к тому, что фактический свободный объем, в котором могут двигаться молекулы реального газа, будет меньше. где b - молярный объем, занимаемый самими молекулами.

Действие сил притяжения газа приводит к появлению дополнительного давления на газ, называемого внутренним давлением. По вычислени­ям Ван-дер-Ваальса, внутреннее давление обратно пропорционально квадрату моляр­ного объема, т. е. где а - постоянная Ван-дер-Ваальса, характеризующая силы межмолекулярного при­тяжения, V m - молярный объем.

В итоге мы получим уравнение состояния реального газа или уравнение Ван-дер-Ваальса :

font-size:10.0pt;font-family:" times new roman> Физический смысл температуры: температура – это мера интенсивности теплового движения частиц веществ. Понятие температуры не применимо к отдельной молекуле. Лишь для достаточно большого количества молекул, создающих некое количество вещества, появляется смысл относить термин температуры.

Для идеального одноатомного газа можно записать уравнение:

font-size:10.0pt;font-family:" times new roman>Первое экспериментальное определение скоростей молекул выпо­лнено немецким физиком О. Штерном (1888-1970). Его опыты позволили также оценить распределение молекул по скоростям.

«Противостояние» между потенциальными энергиями связи молекул и энергиями теплового движения молекул (кинетическими молекулами) приводит к существованию различных агрегатных состояний вещества.

Термодинамика

Подсчитав количество молекул в данной системе и оценив их средние кинетическую и потенциальную энергии, можно оценить внутреннюю энергию данной системы U .

font-size:10.0pt;font-family:" times new roman>Для идеального одноатомного газа .

Внутренняя энергия системы может изменяться в результате различных процессов, например совершения над системой работы или сообщения ей теплоты. Так, вдвигая поршень в цилиндр, в котором находится газ, мы сжимаем этот газ, в результате чего его температура повышается, т. е. тем самым изменяется (увеличивается) внутренняя энергия газа. С другой сторо­ны, температуру газа и его внутреннюю энергию можно увеличить за счет сообщения ему некоторого количества теплоты - энергии, переданной системе внешними телами путем теплообмена (процесс обмена внутренними энергиями при контакте тел с раз­ными температурами).

Таким образом, можно говорить о двух формах передачи энергии от одних тел к другим: работе и теплоте. Энергия механического движения может превращаться в энергию теплового движения, и наоборот. При этих превращениях соблюдается закон сохранения и превращения энергии; применительно к термодинамическим процессам этим законом и является первое начало термодинамики , установленное в результате обобщения многовековых опытных данных:

В замкнутом цикле , поэтому font-size:10.0pt;font-family:" times new roman>КПД теплового двигателя: .

Из первого начала термодинамики следует, что КПД теплового двигателя не может быть больше 100%.

Постулируя существование различных форм энергии и связи между ними первое начало ТД ничего не говорит о направленности процессов в природе. В полном соответствии с первым началом можно мысленно сконструировать двигатель, в котором за счет уменьшения внутренней энергии вещества совершалась бы полезная работа. Например, вместо горючего в тепловом двигателе использовалась бы вода, и за счет охлаждения воды и превращения ее в лед совершалась бы работа. Но подобные самопроизвольные процессы в природе не происходят.

Все процессы в природе можно разделить на обратимые и необратимые.

Одной из основных проблем в классическом естествознании долгое время оставалась проблема объяснения физической природы необратимости реальных процессов. Суть проблемы заключается в том, что движение материальной точки, описываемое II законом Ньютона (F = ma), обратимо, тогда как большое число материальных точек ведет себя необратимо.

Если число исследуемых частиц невелико (например, две частицы на рисунке а)), то мы не сможем определить, куда направлена ось времени: слева направо или справа налево, так как любая последовательность кадров явлется одинаково возможной. Это и есть обратимое явление . Ситуация существенно меняется, если число частиц очень велико (рис. б)). В этом случае направление времени определяется однозначно: слева направо, так как невозможно представить, что равномерно распределенные частицы сами по себе, без каких-то внешних воздействий соберутся в углу «ящика». Такое поведение, когда состояние системы может изменяться только в определенной последовательности, называется необратимым . Все реальные процессы необратимы.

Примеры необратимых процессов: диффузия, теплопроводность, вязкое течение. Почти все реальные процессы в природе являются необратимыми: это и затухание маятника, и эволюция звезды, и человеческая жизнь. Необратимость процессов в природе как бы задает направление на оси времени от прошлого к будущему. Это свойство времени английский физик и астроном А. Эддингтон образно назвал «стрелой времени».

Почему же, несмотря на обратимость поведения одной частицы, ансамбль из большого числа таких частиц ведет себя необратимо? В чем природа необратимости? Как обосновать необратимость реальных процессов, опираясь на законы механики Ньютона? Эти и другие аналогичные вопросы волновали умы самых выдающихся ученых XVIII–XIX вв.

Второе начало термодинамики устанавливает направленность всех процессов в изолированных системах. Хотя общее количество энергии в изолированной системе сохраняется, ее качественный состав меняется необратимо .

1. В формулировке Кельвина второе начало таково: «Невозможен процесс, единственный результат которого состоял бы в поглощении теплоты от нагревателя и полного преобразования этой теплоты в работу».

2. В другой формулировке: «Теплота самопроизвольно может переходить только от более нагретого тела к менее нагретому».

3. Третья формулировка: «Энтропия в замкнутой системе может только увеличиваться».

Второе начало термодинамики запрещает существование вечного двигателя второго рода , т. е. машины, способной совершать работу за счет переноса тепла от холодного тела к горячему. Второй закон термодинамики указывает на существование двух различных форм энергии - теплоты как меры хаотического движения частиц и работы, связанной с упорядоченным движением. Работу всегда можно превратить в эквивалентное ей тепло, но тепло нельзя полностью превратить в работу. Таким образом, неупорядоченную форму энергии нельзя без каких либо дополнительных действий превратить в упорядоченную.

Полное превращение механической работы в теплоту мы делаем каждый раз, нажимая на педаль тормоза в автомобиле. А вот без каких-либо дополнительных действий в замкнутом цикле работы двигателя перевести всю теплоту в работу нельзя. Часть тепловой энергии неизбежно расходуется на нагревание двигателя, плюс движущийся поршень постоянно совершает работу против сил трения (на это тоже расходуется запас механической энергии).

Но смысл второго начала термодинамики оказался еще глубже.

Еще одной формулировкой второго начала термодинамики является следующее утверждение: энтропия замкнутой системы является неубывающей функцией, то есть при любом реальном процессе она либо возрастает, либо остается неизменной.

Понятие энтропии, введенное в термодинамику Р. Клаузиусом, носило первоначально искусственный характер. Выдающийся французский ученый А. Пуанкаре писал по этому поводу: «Энтропия представляется несколько таинственной в том смысле, что величина эта недоступна ни одному из наших чувств, хотя и обладает действительным свойством физических величин, так как, по крайней мере в принципе, вполне поддается измерению».

По определению Клаузиуса, энтропией называется такая физическая величина, приращение которой равно количеству тепла , полученному системой, деленному на абсолютную температуру:

font-size:10.0pt;font-family:" times new roman>В соответствии со вторым законом термодинамики в изолированных системах, т. е. системах, не обменивающихся с окружающей средой энергией, неупорядоченное состояние (хаос) не может самостоятельно перейти в порядок. Таким образом, в изолированных системах энтропия может только расти. Эта закономерность получила название принципа возрастания энтропии . Согласно этому принципу, любая система стремится к состоянию термодинамического равновесия, которое отождествляется с хаосом. Поскольку увеличение энтропии характеризует изменения во времени замкнутых систем, то энтропия выступает в качестве своеобразной стрелы времени .

Состояние с максимальной энтропией мы назвали неупорядоченным, а с малой энтропией - упорядоченным. Статистическая система, если она предоставлена самой себе, переходит из упорядоченного в неупорядоченное состояние с максимальной энтропией, соответствующей данным внешним и внутренним параметрам (давление, объем, температура, число частиц и т. д.).

Людвиг Больцман связал понятие энтропии с понятием термодинамической вероятности: font-size:10.0pt;font-family:" times new roman> Таким образом, любая изолированная система, предоставленная сама себе, с течением времени переходит от состояния упорядоченности в состояние максимального беспорядка (хаоса).

Из этого принципа вытекает пессимистическая гипотеза о тепловой смерти Вселенной, сформулированная Р. Клаузиусом и У. Кельвином, в соответствии с которой:

· энергия Вселенной всегда постоянна;

· энтропия Вселенной всегда возрастает.

Таким образом, все процессы во Вселенной направлены в сторону достижения состояния термодинамического равновесия, соответствующему состоянию наибольшего хаоса и дезорганизации . Все виды энергии деградируют, превратившись в тепло, и звезды закончат свое существование, отдав энергию в окружающее пространство. Установится постоянная температура лишь на насколько градусов выше абсолютного нуля. В этом пространстве будут разбросаны безжизненные, остывшие планеты и звезды. Не будет ничего - ни источников энергии, ни жизни.

Такая мрачная перспектива предсказывалась физикой вплоть до 60-х годов ХХ столетия, хотя выводы термодинамики противоречили результатам исследований в биологии и социальных науках. Так, эволюционная теория Дарвина свидетельствовала, что живая природа развивается преимущественно в направлении усовершенствования и усложнения новых видов растений и животных. История, социология, экономика, другие социальные и гуманитарные науки так же показывали, что в обществе, несмотря на отдельные зигзаги развития, в целом наблюдается прогресс.

Опыт и практическая деятельность свидетельствовали, что понятие закрытой или изолированной системы является достаточно грубой абстракцией , упрощающей действительность, поскольку в природе трудно найти системы, не взаимодействующие с окружающей средой. Противоречие стало разрешаться, когда в термодинамике вместо понятия закрытой изолированной системы ввели фундаментальное понятие открытой системы, т. е. системы, обменивающейся с окружающей средой веществом, энергией и информацией.

В результате изучения материала главы 9 студент должен: знать основные постулаты статистической термодинамики; уметь рассчитывать суммы по состояниям и знать их свойства; пользоваться терминами и определениями, приведенными в главе;

владеть специальной терминологией; навыками расчета термодинамических функций идеальных газов статистическими методами.

Основные постулаты статистической термодинамики

Термодинамический метод не применим к системам, состоящих из малого числа молекул, так как в таких системах исчезает различие между теплотой и работой. Одновременно исчезает однозначность направления процесса:

Для очень малого числа молекул оба направления процесса становятся равноценными. Для изолированной системы - приращение энтропии или равно приведенной теплоте (для равновесно-обратимых процессов), или больше ее (для неравновесных). Такая дуалистичность энтропии может быть объяснена с точки зрения упорядоченности - неупорядоченности движения или состояния составляющих систему частиц; следовательно, качественно энтропию можно рассматривать как меру неупорядоченности молекулярного состояния системы. Эти качественные представления количественно развиваются статистической термодинамикой. Статистическая термодинамика является частью более общего раздела науки - статистической механики.

Основные принципы статистической механики были развиты в конце XIX в. в трудах Л. Больцмана и Дж. Гиббса.

При описании систем, состоящих из большого числа частиц, можно использовать два подхода: микроскопический и макроскопический. Макроскопический подход используется классической термодинамикой, где состояния систем, содержащих единственное чистое вещество, определяется в общем случае тремя независимыми переменными: Т (температура), V (объем), N (число частиц). Однако, с микроскопической точки зрения, система, содержащая 1 моль вещества, включает 6,02 10 23 молекул. Кроме того, в первом подходе подробно характеризуется микросостояние системы,

например координаты и импульсы каждой частицы в каждый момент времени. Микроскопическое описание требует решения классических или квантовых уравнений движения для огромного числа переменных. Так, каждое микросостояние идеального газа в классической механике описывается 6N переменными (N - число частиц): ЗN координат и ЗN проекций импульса.

Если система находится в равновесном состоянии, то ее макроскопические параметры постоянны, тогда как микроскопические параметры изменяются со временем. Это означает, что каждому макросостоянию соответствует несколько (на самом деле - бесконечно много) микросостояний (рис. 9.1).

Рис. 9.1.

Статистическая термодинамика устанавливает связь между этими двумя подходами. Основная идея заключается в следующем: если каждому макросостоянию соответствует много микросостояиий, то каждое из них вносит в макросостояние свой вклад. Тогда свойства макросостояния можно рассчитать как среднее но всем микросостояниям, т.е. суммируя их вклады с учетом статистического веса.

Усреднение по микросостояниям проводят с использованием понятия статистического ансамбля. Ансамбль - это бесконечный набор идентичных систем, находящихся во всех возможных микросостояниях, соответствующих одному макросостоянию. Каждая система ансамбля - это одно микросостояние. Весь ансамбль описывается некоторой функцией распределения по координатам и импульсам р(р, q , t), которая определяется следующим образом: р(p, q, t)dpdq - это вероятность того, что система ансамбля находится в элементе объема dpdq вблизи точки (р , q) в момент времени t.

Смысл функции распределения состоит в том, что она определяет статистический вес каждого микросостояния в макросостояпии.

Из определения следуют элементарные свойства функции распределения:

Многие макроскопические свойства системы можно определить как среднее значение функций координат и импульсов f(p, q) по ансамблю:

Например, внутренняя энергия - это среднее значение функции Гамильтона Н(р, q):

(9.4)

Существование функции распределения составляет суть основного постулата классической статистической механики: макроскопическое состояние системы полностью задается некоторой функцией распределения , которая удовлетворяет условиям (9.1) и (9.2).

Для равновесных систем и равновесных ансамблей функция распределения не зависит явно от времени: р = р(p, q). Явный вид функции распределения зависит от типа ансамбля. Различают три основных тина ансамблей:

где k = 1,38 10 -23 Дж/К - постоянная Больцмана. Значение константы в выражении (9.6) определяется условием нормировки.

Частным случаем канонического распределения (9.6) является распределение Максвелла по скоростям ь которое справедливо для газов:

(9.7)

где m - масса молекулы газа. Выражение р(v)dv описывает вероятность того, что молекула имеет абсолютное значение скорости в интервале от v до v + d&. Максимум функции (9.7) дает наиболее вероятную скорость молекул, а интеграл

среднюю скорость молекул.

Если система имеет дискретные уровни энергии и описывается квантовомеханически, то вместо функции Гамильтона Н(р, q) используют оператор Гамильтона Н, а вместо функции распределения - оператор матрицы плотности р:

(9.9)

Диагональные элементы матрицы плотности дают вероятность того, что система находится в і-м энергетическом состоянии и имеет энергию Е{.

(9.10)

Значение константы определяется условием нормировки:

(9.11)

Знаменатель этого выражения называют суммой по состояниям. Он имеет ключевое значение для статистической оценки термодинамических свойств системы. Из выражений (9.10) и (9.11) можно найти число частиц N jf имеющих энергию

(9.12)

где N - общее число частиц. Распределение частиц (9.12) по уровням энергии называют распределением Больцмана, а числитель этого распределения - больцмановским фактором (множителем). Иногда это распределение записывают в другом виде: если существует несколько уровней с одинаковой энергией £, то их объединяют в одну группу путем суммирования больцмановских множителей:

(9.13)

где gj - число уровней с энергией Ej , или статистический вес.

Многие макроскопические параметры термодинамической системы можно вычислить с помощью распределения Больцмана. Например, средняя энергия определяется как среднее по уровням энергии с учетом их статистических весов:

(9.14)

3) большой канонический ансамбль описывает открытые системы, находящиеся в тепловом равновесии и способные обмениваться веществом с окружающей средой. Тепловое равновесие характеризуется температурой Т, а равновесие по числу частиц - химическим потенциалом р. Поэтому функция распределения зависит от температуры и химического потенциала. Явное выражение для функции распределения большого канонического ансамбля мы здесь использовать не будем.

В статистической теории доказывается, что для систем с большим числом частиц (~10 23) все три типа ансамблей эквивалентны друг другу. Использование любого ансамбля приводит к одним и тем же термодинамическим свойствам, поэтому выбор того или иного ансамбля описания термодинамической системы диктуется только удобством математической обработки функций распределения.

Молекулярная физика,

Термодинамика,

Статистическая физика,


три положения
1. вещество состоит из частиц;
2.
3.

статистического метода усредненными

термодинамический метод

Начала термодинамики

Первое начало термодинамики

δQ = δA + dU , где dU Q и δA

Второе начало термодинамики

1 - Постулат Клаузиуса.

2 - Постулат Кельвина.

Приращение энтропии (

Нулевое начало термодинамики (общее начало термодинамики )

Если система A B C , то система A находится в равновесии с C

Элементы физической кинетики. Явление переноса в термодинамически неравновесных системах. Общее уравнение явлений переноса в газах и его обоснование согласно МКТ. Зависимость коэффициентов переноса от давления и температуры.

Физи́ческая кине́тика (др.-греч. κίνησις - движение) - микроскопическая теория процессов в неравновесных средах. В кинетике методами квантовой или классическойстатистической физики

Изучают процессы переноса энергии, импульса, заряда и вещества в различных физических системах (газах, плазме, жидкостях, твёрдых телах) и влияние на них внешних полей.

В термодинамически неравновесных системах возникают особые необратимые процес­сы, называемые явлениями переноса , в результате которых происходит пространственный перенос энергии, массы, импульса. К явлениям переноса относятся теплопроводность (обусловлена переносом энергии), диффузия (обусловлена переносом массы ) и внутреннее трение (обусловлено переносом импульса).

1. Теплопроводность. Если в одной области газа средняя кинетическая энергия молекул больше,чем в другой, то с течением времени вследствие постоянных сто­лкновений молекул происходит процесс выравнивания средних кинетических энергий молекул, т. е., иными словами, выравнивание температур.

Перенос энергии в форме теплоты подчиняетсязакону Фурье:

где j E -плотность теплового потока - величина, определяемая энергией, переносимой в форме теплоты оси х , l - теплопроводность , - градиент температуры, равный скорости изменения температуры на единицу длины х в направлении нормали к этой площадке. Знак минус показывает, что при теплопроводности энергия переносится в направлении убывания температуры (поэтому знаки j E и – противоположны).

2. Диффузия. Явление диффузии заключается в том, что происходит самопроиз­вольное проникновение и перемешивание частиц двух соприкасающихся газов, жидкостей и даже твердых тел; диффузия сводится к обмену масс частиц этих тел, возникает и продолжается, пока существует градиент плотности. Во время становления молекулярно-кинетической теории по вопросу диффузии возникли противоречия. Так как молекулы движутся с огромными скоростями, диффузия должна происходить очень быстро. Если же открыть в комнате сосуд с пахучим веществом, то запах распространяется довольно медленно. Однако противоречия здесь нет. Молекулы при атмосферном давлении обладают малой длиной свободного пробега и, сталкиваясь с другими молекулами, в основном «стоят» на месте.

Явление диффузии для химически однородного газа подчиняется закону Фука :

где j m -плотность потока массы - величина, определяемая массой вещества, диффундирующего в единицу времени через единичную площадку,перпендикулярную оси х, D - диффузия (коэффициент диффузии), dr/ dx - градиент плотности, равный скорости изменения плотности на единицу длины х в направлении нормали к этой площадке. Знак минус показывает, что перенос массы происходит в направлении убывания плотности (поэтому знаки j m и dr/ dx противоположны).

3. Внутреннее трение (вязкость ). Механизм возникновения внутреннего трения меж­ду параллельными слоями газа (жидкости), движущимися с различными скоростями, заключается в том, что из-за хаотического теплового движения происходит обмен молекулами между слоями, в результате чего импульс слоя, движущегося быстрее, уменьшается, движущегося медленнее - увеличивается, что приводит к торможению слоя, движущегося быстрее, и ускорению слоя, движущегося медленнее.

Сила внутреннего трения между двумя слоями газа (жидкости) подчиняется закону Ньютона :

где h - динамическая вязкость (вязкость), dv/ dx - градиент скорости, показывающий быстроту изменения скорости в направлении х, перпендикулярном направлению дви­жения слоев, S - площадь, на которую действует сила F.

Взаимодействие двух слоев согласно второму закону Ньютона можно рассматри­вать как процесс, при котором от одного слоя к другому в единицу времени передается импульс, по модулю равный действующей силе. Тогда данное выражение можно представить в виде

где j p - плотность потока импульса - величина, определяемая полным импульсом, переносимым в единицу времени в положительном направлении оси х через единичную площадку, перпендикулярную оси х, - градиент скорости. Знак минус указывает, что импульс переносится в направлении убывания скорости.

Коэффициент диффузии растет с повышением температуры:

С повышением температуры, коэффициент теплопроводности тоже увеличивается:

Температурная зависимость коэффициента вязкости аналогична зависимости для коэффициента теплопроводности:

Первый закон (первое начало) термодинамики (закон сохранения энергии в тепловых процессах). Применение первого начала термодинамики к изопроцессам в газах. Адиабатический процесс. Уравнение Пуассона. Политропный процесс.

Первое начало термодинамики - один из трёх основных законов термодинамики, представляет собой закон сохранения энергии длятермодинамических систем

.

Изменение внутренней энергии системы при переходе её из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе, то есть, оно зависит только от начального и конечного состояния системы и не зависит от способа, которым осуществляется этот переход. Иными словами, внутренняя энергия является функцией состояния . В циклическом процессе внутренняя энергия не изменяется.

δQ = δA + dU , где dU есть полный дифференциал внутренней энергии системы, а δQ и δA есть элементарное количество теплоты, переданное системе, и элементарная работа, совершенная системой соответственно.

Первое начало термодинамики:

§ при изобарном процессе

§ при изохорном процессе (A = 0)

§ при изотермическом процессе (ΔU = 0)

Здесь - масса газа, - молярная масса газа, - молярная теплоёмкость при постоянном объёме, - давление, объём и температура газа соответственно, причём последнее равенство верно только для идеального газа.

Твердое состояние вещества. Состояние, характеризующееся способностью сохранять объём и форму. Атомы твёрдого тела совершают лишь небольшие колебания вокруг состояния равновесия. Присутствует как дальний, так и ближний порядок.

Д. имеет место в газах, жидкостях и твёрдых телах, причём диффундировать могут как находящиеся в них частицы посторонних веществ, так и собственные частицы.Д. крупных частиц, взвешенных в газе или жидкости осуществляется благодаря их броуновскому движению. Наиболее быстро Д. происходит в газах, медленнее в жидкостях, ещё медленнее в твёрдых телах, что обусловлено характером теплового движения частиц в этих средах.

Твердое тело. Состояние, характеризующееся способностью сохранять объём и форму. Атомы твёрдого тела совершают лишь небольшие колебания вокруг состояния равновесия. Присутствует как дальний, так и ближний порядок.

Жидкость. Состояние вещества, при котором оно обладает малой сжимаемостью, то есть хорошо сохраняет объём, однако не способно сохранять форму. Жидкость легко принимает форму сосуда, в который она помещена. Атомы или молекулы жидкости совершают колебания вблизи состояния равновесия, запертые другими атомами, и часто перескакивают на другие свободные места. Присутствует только ближний порядок.

Газ. Состояние, характеризующееся хорошей сжимаемостью, отсутствием способности сохранять как объём, так и форму. Газ стремится занять весь объём, ему предоставленный. Атомы или молекулы газа ведут себя относительно свободно, расстояния между ними гораздо больше их размеров.

Плазма. Часто причисляемая к агрегатным состояниям вещества плазма отличается от газа большой степенью ионизации атомов. Большая частьбарионного вещества (по массе ок. 99,9 %) во Вселенной находится в состоянии плазмы.

Явление поверхностного натяжения. Коэффициент поверхностного натяжения. Гидрофильные и гидрофобные поверхности. Условие рвновесия капли жидкости на поверхности твердого тела (принцип наименьшей энергии). Поверхностно-активные вещества (ПАВ) и их применение.

Пове́рхностное натяже́ние - термодинамическая характеристика поверхности раздела двух находящихся в равновесии фаз, определяемая работой обратимого изотермокинетического образования единицы площади этой поверхности раздела при условии, что температура, объем системы и химические потенциалы всех компонентов в обеих фазах остаются постоянными.

Поверхностное натяжение имеет двойной физический смысл - энергетический (термодинамический) и силовой (механический). Энергетическое (термодинамическое) определение: поверхностное натяжение - это удельная работа увеличения поверхности при её растяжении при условии постоянства температуры. Силовое (механическое) определение: поверхностное натяжение - это сила, действующая на единицу длины линии, которая ограничивает поверхность жидкости

Коэффициент поверхностного натяжения - работа, необходимая для изотермического увеличения площади поверхности жидкости на 1 кв.м.

Коэффициент поверхностного натяжения:
- уменьшается с повышением температуры;
- равен нулю в критической точке;
- зависит от наличия примесей в жидкости.

Гидрофобность (от др.-греч. ὕδωρ - вода и φόβος - боязнь, страх) - это физическое свойство молекулы, которая «стремится» избежать контакта с водой. Сама молекула в этом случае называется гидрофобной.

Гидрофильность (от др.-греч. ὕδωρ - вода и φιλία - любовь) - характеристика интенсивности молекулярного взаимодействия поверхности тел с водой. Наряду сгидрофобностью относится не только к телам, у которых оно является свойством поверхности.

Рассмотрим теперь явления, происходящие с каплей жидкости, помещенной на поверхность твердого тела. В этом случае имеются три границы раздела между фазами: газ-жидкость, жидкость-твердое тело и газ-твердое тело. Поведение капли жидкости будет определяться значениями поверхностного натяжения (удельными величинами свободной поверхностной энергии) на указанных границах раздела. Сила поверхностного натяжения на границе раздела жидкости и газа будет стремиться придать капле сферическую форму. Это произойдет в том случае, если поверхностное натяжение на границе раздела жидкости и твердого тела будет больше поверхностного натяжения на границе раздела газа и твердого тела. В этом случае процесс стягивания жидкой капли в сферу приводит к уменьшению площади поверхности границы раздела жидкость-твердое тело при одновременном увеличении площади поверхности границы раздела газ-жидкость. Тогда наблюдается несмачивание поверхности твердого тела жидкостью. Форма капли будет определяться равнодействующей сил поверхностного натяжения и силы тяжести. Если капля большая, то она будет растекаться по поверхности, а если маленькая - стремиться к шарообразной форме.

Пове́рхностно-акти́вные вещества́ (ПАВ ) - химические соединения, которые, концентрируясь на поверхности раздела фаз, вызывают снижение поверхностного натяжения.

Области применения

Моющие средства. Основное применение ПАВ - в качестве активного компонента моющих и чистящих средств (в том числе, применяемых для дезактивации), мыла, для ухода за помещениями, посудой, одеждой, вещами, автомобилями и пр.

Косметика. Основное использование ПАВ в косметике - шампуни, где содержание ПАВ может достигать десятков процентов от общего объёма.

Текстильная промышленность. ПАВ используются в основном для снятия статического электричества на волокнах синтетической ткани.

Кожевенная промышленность. Защита кожаных изделий от лёгких повреждений и слипания.

Лакокрасочная промышленность. ПАВ используются для снижения поверхностного натяжения, что обеспечивает лёгкое проникновение красочного материала в маленькие углубления на обрабатываемой поверхности и их заполнение с вытеснением при этом оттуда другого вещества (например, воды).

Бумажная промышленность. ПАВ используются для разделения чернил и варёной целлюлозы при переработке использованной бумаги.

Металлургия. Эмульсии ПАВ используются для смазки прокатных станов. Снижают трение. Выдерживают высокие температуры, при которых сгорает масло.

Защита растений. ПАВ широко используются в агрономии и сельском хозяйстве для образования эмульсий. Используются для повышения эффективности транспортировки питательных компонентов к растениям через мембранные стенки.

Пищевая промышленность. ПАВ в виде эмульгаторов (например лецитина) добавляют для улучшения вкусовых качеств.

Нефтедобыча. ПАВ применяются для гидрофобизации призабойной зоны пласта (ПЗП) с целью увеличения нефтеотдачи.

Строительство. ПАВ, называемые пластификаторами, добавляют к цементно-песчаным смесям и бетонам для уменьшения их водопотребности при сохранении подвижности. Это увеличивает конечную прочность (марку) затвердевшего материала, его плотность, морозостойкость, водонепроницаемость.

Медицина. Катионные и анионные ПАВ применяют в хирургии в качестве антисептиков.

Капиллярные явления, физические явления, обусловленные действием поверхностного натяжения на границе раздела несмешивающихся сред. К К. я. относят обычно явления в жидких средах, вызванные искривлением их поверхности, граничащей с др. жидкостью, газом или собственным паром.

Смачивание, явление, возникающее при соприкосновении жидкости с поверхностью твёрдого тела или другие жидкости. Оно выражается, в частности, в растекании жидкости по твёрдой поверхности, находящейся в контакте с газом (паром) или другой жидкостью, пропитывании пористых тел и порошков, искривлении поверхности жидкости у поверхности твёрдого тела.

Формула Лапласа

Рассмотрим тонкую жидкую плёнку, толщиной которой можно пренебречь. Стремясь минимизировать свою свободную энергию, плёнка создаёт разность давления с разных сторон. Этим объясняется существование мыльных пузырей: плёнка сжимается до тех пор, пока давление внутри пузыря не будет превышать атмосферное на величину добавочного давленияплёнки . Добавочное давление в точке поверхности зависит от средней кривизны в этой точке и даётся формулой Лапласа :

Здесь R 1,2 - радиусы главных кривизн в точке. Они имеют одинаковый знак, если соответствующие центры кривизны лежат по одну сторону от касательной плоскости в точке, и разный знак - если по разную cторону. Например, для сферы центры кривизны в любой точке поверхности совпадают с центром сферы, поэтому

R 1 = R 2 = R

Для случая поверхности кругового цилиндра радиуса R имеем

Обратите внимание, что Δp должно быть непрерывной функцией на поверхности плёнки, так что выбор «положительной» стороны плёнки в одной точке локально однозначно задаёт положительную сторону поверхности в достаточно близких её точках.

Из формулы Лапласа следует, что свободная мыльная плёнка, натянутая на рамку произвольной формы и не образующая пузырей, будет иметь среднюю кривизну, равную 0.

Предмет молекулярной физики и термодинамики. Статистическая физика и термодинамика. Основные положения МКТгазов. Термодинамический и статистический методы. Три начала термодинамики.

Молекулярная физика, раздел физики, в котором изучаются физические свойства тел в различных агрегатных состояниях на основе рассмотрения их микроскопического (молекулярного) строения.

Термодинамика, наука о наиболее общих свойствах макроскопических систем, находящихся в состоянии термодинамического равновесия, и о процессах перехода между этими состояниями.

Статистическая физика, раздел физики, задача которого - выразить свойства макроскопических тел, т. е. систем, состоящих из очень большого числа одинаковых частиц (молекул, атомов, электронов и т.д.), через свойства этих частиц и взаимодействие между ними.

Молекулярно-кинетической теорией называется учение, которое объясняет строение и свойства тел движением и взаимодействием атомов, молекул и ионов, из которых состоят тела.
В основе МКТ строения вещества лежат три положения , каждое из которых доказано с помощью наблюдений и опытов (броуновское движение, диффузия и др.):
1. вещество состоит из частиц;
2. частицы хаотически движутся;
3. частицы взаимодействуют друг с другом.
Цель молекулярно-кинетической теории - объяснение свойств макроскопических тел и тепловых процессов, протекающих в них, на основе представлений о том, что все тела состоят из отдельных, беспорядочно движущихся частиц.

Процессы, изучаемые молекулярной физикой, являются результатом совокупного действия огромного числа молекул. Законы поведения огромного числа молекул, являясь статистическими закономерностями, изучаются с помощью статистического метода . Этот метод основан на том, что свойства макроскопической системы в конечном счете определяются свойствами частиц системы, особенностями их движения и усредненными значениями динамических характеристик этих частиц (скорости, энергии и т. д.). Например, температура тела определяется скоростью хаотического движения его молекул, но так как в любой момент времени разные молекулы имеют различные скорости, то она может быть выражена только через среднее значение скорости движения молекул.

Термодинамика не рассматривает микропроцессы, которые лежат в основе этих превращений. Этим термодинамический метод отличается от статистического. Термодинамика базируется на двух началах фундаментальных законах, установленных в результате обобщения опытных данных.

Начала термодинамики - совокупность постулатов, лежащих в основе термодинамики. Эти положения были установлены в результате научных исследований и были доказаны экспериментально. В качестве постулатов они принимаются для того, чтобы термодинамику можно было построить аксиоматически.

Необходимость начал термодинамики связана с тем, что термодинамика описывает макроскопические параметры систем без конкретных предположений относительно их микроскопического устройства. Вопросами внутреннего устройства занимается статистическая физика.

Начала термодинамики независимы, то есть ни одно из них не может быть выведено из других начал.

Первое начало термодинамики

Количество теплоты, полученное системой, идёт на изменение её внутренней энергии и совершение работы против внешних сил

Изменение внутренней энергии системы при переходе её из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе и не зависит от способа, которым осуществляется этот переход.

δQ = δA + dU , где dU есть полный дифференциал внутренней энергии системы, а δQ и δA есть элементарное количество теплоты, переданное системе, и элементарная работа, совершенная системой соответственно.

Второе начало термодинамики

Второй закон термодинамики исключает возможность создания вечного двигателя второго рода.

1 - Постулат Клаузиуса. Невозможен процесс, единственным результатом которого являлась бы передача тепла от более холодного тела к более горячему

2 - Постулат Кельвина. Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара

Третье начало термодинамики может быть сформулировано так:

Приращение энтропии (как на меру беспорядка в системе) при абсолютном нуле температуры стремится к конечному пределу, не зависящему от того, в каком равновесном состоянии находится система.

Нулевое начало термодинамики (общее начало термодинамики )

Физический принцип, утверждающий, что вне зависимости от начального состояния изолированной системы в конце концов в ней установится термодинамическое равновесие, а также что все части системы при достижении термодинамического равновесия будут иметь одинаковую температуру. Тем самым нулевое начало фактически вводит и определяет понятие температуры. Нулевому началу можно придать чуть более строгую форму:

Если система A находится в термодинамическом равновесии с системой B , а та, в свою очередь, с системой C , то система A находится в равновесии с C . При этом их температуры равны.