Лекция. Система сигнализации ОКС7. Общее описание ОКС7 Особенности работы сети сигнализации окс 7

Общеканальная сигнализация ОКС7. Типы и принципы организации взаимодействия. Процесс установления соединения.

На сетях общего пользования принята система сигнализации типа ОКС7. В настоящее время система ОКС7 необходима при построении следующих цифровых сетей: телефонной сети общего пользования (ТфОП), цифровой сети с интеграцией обслуживания (ЦСИО - ISDN), сети мобильной связи (СМС), интеллектуальной сети (ИС).

Система сигнализации рассчитана на обслуживание крупных пучков СЛ. В зависимости от обслуживаемого трафика рекомендовано в одном пучке объединять от 700 до 2000 ЦСЛ (теоретически количество ЦСЛ может достигать 30000).

Многоуровневая эталонная модель системы ОКС7 была разработана раньше, чем эталонная модель взаимодействия открытых систем (ВОС) и поэтому имеет свои особенности. На рис.7.57 показана структура протоколов уровней модели ОКС7, а также их соответствие уровням модели ВОС.

Модель ОКС7 состоит из двух основных частей: подсистем пользователей и приложений; подсистемы передачи сообщений МТР. К подсистемам пользователей и приложений относятся: TUP - подсистема телефонных пользователей, ISUP - подсистема пользователей сетью ISDN, MUP - подсистема пользователей подвижной связи (стандарт NMT), HUP - подсистема передачи сигналов управления в процессе разговора на сети мобильной связи стандарта NMT, SCCP - подсистема управления соединением сигнализации, TCAP - подсистема обработки транзакций, МАР - пользователей мобильной связью стандарта GSM, ОМАР - подсистема техобслуживания и эксплуатации, INAP - подсистема пользователей интеллектуальной сети. Перечисленные подсистемы необходимы для обеспечения соответствующих услуг связи. Через них передаются сообщения протоколов уровня 4. Подсистема МТР выполняет роль транспортной платформы, общей для всех пользователей и приложений. Данная подсистема включает в себя протоколы уровней 1…3: физического, канального и сетевого. Модель ОКС7 соответствует модели ВОС только на нижних уровнях: физическом и канальном. Сетевой уровень модели ОКС7 в отличие от аналогичного уровня модели ВОС не выполняет полностью функций по маршрутизации сигнальных соединений. Этот недостаток исключается при использовании подсистемы SCCP.

Рассмотрим функции уровней ОКС7.

На уровне 1 выполняются функции звена данных сигнализации. Для этого уровня определены физические, электрические и функциональные характеристики канала передачи данных на звене сети сигнализации. Звено образовано между двумя напрямую связанными пунктами сети сигнализации. Наиболее часто звено образуется между двумя смежными коммутационными станциями, каждая из которых является пунктом сети сигнализации. В качестве канала звена сигнализации обычно используется один из ОЦК первичного канала Е1.

Уровень 2 определяет функции и процедуры, относящиеся к передаче сигнальных сообщений по звену сети сигнализации. На этом канальном уровне выполняются функции по определению структуры передаваемой информации по каждому звену и процедуры по обнаружению и исправлению ошибок.

Совместное выполнение функций на уровнях 1 и 2 ОКС7 позволяет организовать звено сигнализации, служащее для передачи сигнальной информации. Такая информация передается в виде сигнальных сообщений, получивших для ОКС7 название сигнальных единиц . Сигнальные единицы имеют переменную длину и непрерывно передаются по каналу данных каждого звена.

Уровень 3 предназначен для выполнения сетевых функций сигнализации.

Основная задача этого уровня состоит в надежной доставке сигнальной информации от одной коммутационной станции к другой. При этом производится управление звеном сигнализации, обеспечивающее обработку принимаемых сигнальных сообщений с целью их дальнейшей маршрутизации. Маршрутизация состоит в том, что на уровне 3 принятое сигнальное сообщение либо остается в данном пункте сети и направляется на верхний уровень (например, в подсистему ISUP), либо передается в другой пункт сети.

Рассмотрим уровень 4 ОКС7 на примере подсистемы ISUP. Эта подсистема направлена на установление соединений и на разъединение на сетях с цифровыми АТС, в которые включаются как цифровые, так и аналоговые абонентские установки.

С помощью подсистемы ISUP между коммутационными станциями передаются сообщения. На рис. показана диаграмма установления соединения и разъединения между цифровыми телефонными аппаратами ТА А и ТА Б при передаче цифр блочным способом.

Соединение начинается с передачи от аб. А номера вызываемого абонента, принимаемого и анализируемого на АТС А. На АТС А в соответствии с полученным номером, выбирается маршрут сигнализации, формируется и передается сообщение IAM (Начальное адресное сообщение). В этом сообщении содержится адресная информация - номера вызываемого и вызывающего абонентов, а также другая информация - тип доступа на исходящей стороне - с аналоговым или с цифровым абонентским устройством, тип требуемой вызывающим абонентом услуги, например, передача речи на скорости 64 кбит/с, информация о том, включено ли на исходящей стороне эхоподавляющее устройство и другие. Сообщение IAM анализируется на АТС А, выбирается направление соединения к АТС Б и новое сообщение IAM передается на транзитную АТС Б. В это же время АТС А проключает разговорный тракт в обратном направлении, что в необходимых случаях позволяет исходящей стороне прослушивать тональные сигналы, посылаемые от АТС Б. В рассматриваемом примере предполагается, что транзитный пункт сети сигнализации совмещен с АТС Б. После анализа данных, содержащихся в последнем сообщении IAM, АТС Б проключает в обоих направлениях разговорный тракт. Далее АТС Б выбирает направление соединения к АТС В, формирует следующее сообщение IAM и посылает его к АТС В. На АТС В разговорный тракт проключается в прямом и обратном направлениях, определяется линия вызываемого абонента и если доступ к аб. Б свободен, посылает к аб. Б сигнал ПВ (посылка вызова). В ТА аб. Б работает вызывное устройство. На АТС В формируется и передается к АТС Б сообщение АСМ (Адрес полный), указывающее о полной адресной информации, принятой на АТС В. Это сообщение проходит через транзитную АТС и достигает АТС А. Прием данного сообщения на каждой станции приводит к удалению из памяти информации, связанной с соединением, аб. Б подается сигнал КПВ (контроль посылки вызова). Когда вызванный абонент ответит, то АТС В формирует сообщение ANM (Ответ). Последнее передается к АТС Б, а затем к АТС А. На АТС В образуется двусторонний разговорный тракт а на АТС А разговорный тракт проключается в прямом направлении. Абоненты разговаривают. Подсистема ISUP использует метод одностороннего отбоя, когда инициализация разъединение может быть от любого из абонентов. Предположим, что первым дал отбой вызывавший абонент. После приема отбоя на АТС А нарушаются разговорные тракты и к АТС Б посылается сообщение REL (Освобождение). АТС Б обрабатывает это сообщение и пересылает его к АТС В. На обеих АТС нарушаются разговорные тракты. АТС В преобразует сообщение REL в сообщение DISCONNECT и посылает его к аб. Б. От каждой из АТС, принявшей сообщение REL, передается в обратном направлении сообщение RLC (Release Complete), указывающее на освобождение разговорного канала.

Общеканальная сигнализация ОКС7. Типы сигнальных единиц. Способы обнаружения ошибок.

В зависимости от назначения сигнальные единицы делятся на три типа:

1. значащая сигнальная единица (MSU), предназначенная для передачи сигнальных сообщений, сформированных в подсистемах пользователей и приложений;

2. сигнальная единица состояния звена (LSSU), служащая для контроля состояния звена сигнализации;

3. заполняющая сигнальная единица (FISU), обеспечивающая синхронизацию на звене при отсутствии сигнальной информации.

На рис.7.58 показаны форматы сигнальных единиц разных типов и количество битов, входящих в соответствующие поля сигнальных единиц.

Формат MSU (рис.7.58,а) включает в себя поля фиксированной длины и одно поле переменной длины - поле сигнальной информации SIF. В начале и в конце сигнальной единицы устанавливается флаг F, имеющий следующую последовательность битов: 01111110. Два флага позволяют выделить из общего потока каждую сигнальную единицу. Чтобы последовательность битов флага не появилась в ином поле сигнальной единицы на передающей стороне для всех полей, кроме флагов, производится стаффинг (вставление нулей после каждой последовательности из пяти непрерывно следующих единиц), а на принимающей стороне - дестаффинг (изъятие вставленных на передающей стороне нулей).

Поля: обратный порядковый номер BSN, обратный бит-индикатор BIB, прямой порядковый номер FSN, прямой бит-индикатор FIB - необходимы для процедуры обнаружения и исправления ошибок. Номер FSN присваивается каждой передаваемой сигнальной единице, BSN - это номер принятой сигнальной единицы, посылаемый в обратном направлении для подтверждения её приема.

Для обнаружения ошибок используется циклический код, а исправление ошибок достигается методами повторной передачи сигнальной единицы, принятой с ошибкой.

Поле индикатора длины LI используется, во-первых, для определения типа сигнальной единицы, во-вторых, для указания количества байтов, входящих в поля SIO и SIF. Тип сигнальной единицы определяется следующим образом: LI=0 - заполняющая сигнальная единица, LI=1 или 2 - сигнальная единица состояния звена, LI>2 - значащая сигнальная единица. В поле LI может быть записано максимальное число, равное 63.

Байт служебной информации SIO содержит индикатор службы и поле подвида службы. Индикатор службы, занимающий 4 бита, отмечает к какой подсистеме относится данная сигнальная единица: 0011 - SCCP, 0100 - TUP, 0101 - ISUP, а также то, что сигнальная единица несет информацию по управлению сетью сигнализации (0000) или предназначена для тестирования звена сигнализации (0001). В поле подвида службы используются только два старших разряда 4-битового слова, указывающих через какую сеть устанавливается соединение: 00 - международная сеть; 01 - резерв для международной сети; 10 - национальная сеть (в России - междугородная сеть общего пользования); 11 - резерв для национального применения (в России - местная сеть общего пользования).

Поле сигнальной информации SIF несет в первую очередь полезную для пользователей информацию. На передающей стороне поле SIF заполняется информацией, поступившей от уровня 4, а на принимающей стороне содержимое этого поля передается на уровень 4.

Далее следуют проверочные биты СК, содержимое которых позволяет с помощью циклического кода, использующего образующий полином: х 16 + х 12 + х 5 +1, обнаруживать битовые ошибки в сигнальной единице. Если в принятой сигнальной единице обнаружена ошибка, то сигнальная единица стирается и запускается механизм исправления ошибки методом повторной передачи этой сигнальной единицы.

Цель работы: изучить основные характеристики общеканальной системы сигнализации ОКС №7.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

В связи с внедрением цифровых телефонных станций, позволяющих удовлетворить высокие требования клиентов телефонных сетей, перед разработчиками стал вопрос разработки принципиально нового вида сигнализации.

Решение этих задач было найдено на пути заимствования некоторых наиболее полезных технологий передачи данных. Этот подход был первоначально опубликован при разработке системы сигнализации по общему каналу №6 (1964-1968гг., Зеленая книга ITU-T). Система ОКС полностью удаляет сигнализацию из разговорного тракта, используя отдельное общее звено сигнализации, по которому передаются все сигналы для нескольких трактов. Однако, работая по относительно медленным звеньям сигнализации с модемной связью на скорости 2400 или 4800 бит/с система ОКС не могла в полной мере удовлетворить существующие потребности.

Протокол ОКС:

Должен иметь многоуровневую архитектуру, обеспечивающую возможность модернизации отдельных компонент протокола сигнализации, не затрагивая других его частей;

Быть универсальным для разнообразных применений (как телефония, так и передача данных, услуги ISDN, обслуживание абонентов мобильной связи и другое);

Обеспечение надежности связи, при которой потеря одного звена сигнализации не должна оказывать значительное отрицательное влияние на качество обслуживания сети связи;

Наличие качественных спецификаций, достаточно исчерпывающих для того, чтобы обеспечить различным производителям АТС самостоятельное внедрение ОКС.

Разработанная по этим требованиям система общеканальной сигнализации №7 стала применяемым во всем мире стандартом для международной и национальных телефонных сетей. Протокол ОКС№7 обеспечивает все преимущества ОКС№6 по обслуживанию вызовов и предоставляет также новые возможности по созданию телекоммуникационных услуг.

Целью разработки протокола ОКС №7 также является высокая надежность передачи информации с минимальной задержкой, без потерь и без дублирования сигнальных сообщений. Помимо архитектуры самого протокола это достигается оптимизацией построения сетей сигнализации ОКС №7.

В процессе функционирования телекоммуникационной сети отдельные объекты сети в виде систем телекоммуникаций производят обслуживание пользователей по предоставлению различных видов связи.

Процесс организации связи и обеспечения взаимодействия пользователей образует телекоммуникационный процесс. Телекоммуникационный процесс включает три базовых компонентных процесса:

    сигнализации;

    управления;

    коммутации.

Внеканальная сигнализация по общему каналу - это сигнализация по отдельному, выделенному каналу, который является общим для группы информационных каналов, причем каждый информационный канал в данной группе (пучке) равноправен по доступу и возможностям использования общего канала сигнализации.

Система сигнализации по ОКС№7 ориентирована на телекоммуникационные сети, использующие:

Цифровую коммутацию;

Управление на базе вычислительных средств;

Современные и новые компьютерные технологии.

Система ОКС №7 полностью обеспечивает все возможности и преимущества системы сигнализации ОКС №6 по обслуживанию телефонных абонентов, но, наряду с этим, предоставляет также новые возможности:

По созданию новых телекоммуникационных услуг;

Обеспечению более высокой надежности передачи информации с минимальной задержкой, без потерь и дублирования сигнальных сообщений;

Оптимальному построению сетей сигнализации.

Система сигнализации №7 охватывает сигнализацию как относящуюся, так и не относящуюся к установлению соединения (каналозависимую и каналонезависимую сигнализацию).

Система сигнализации №7 оптимизирована для работы по цифровым каналам 64Кбит/с. Она пригодна также для работы по аналоговым каналам и на более низкой скорости. Система сигнализации применима для наземных и спутниковых звеньев в режиме связи от точки к точке. Система сигнализации не содержит средств, необходимых для работы в режиме от точки к группе точек (точка-многоточка), но, при необходимости, допускает возможность расширения до обеспечения и такого применения.

Примеры приложений, обеспечиваемых системой сигнализации №7:

    коммутируемая телефонная сеть общего пользования - ТфОП;

    цифровая сеть с интеграцией служб - ЦСИС;

    интеллектуальная сеть - взаимодействие с сетевыми базами данных, пунктами управления услугами для управления обслуживанием;

    сеть сухопутной подвижной связи общего пользования - взаимодействие со средствами подвижной связи;

    сеть управления телекоммуникационной сетью - взаимодействие со средствами оперативного управления и технической эксплуатации.

Компоненты системы сигнализации №7 регламентированы первоначально Международным Комитетом по телефонии и телеграфии (МККТТ), который в последующем был превращен в Сектор стандартизации электросвязи Международного союза электросвязи МСЭ-Т.

Рисунок 11.1 – Структура ОКС№7

В целом модель ОКС №7 состоит из двух основных частей:

Подсистем пользователей и приложений;

Подсистемы передачи сообщений МТР.

Система сигнализации №7 содержит следующие функциональные блоки:

Подсистема передачи сообщений (MTP);

Подсистема пользователей телефонной связи (TUP);

Подсистема пользователя данных (DUP);

Подсистема пользователей ЦСИС (ISUP);

Подсистема управления соединением сигнализации (SCCP);

Транзакционные возможности (TC);

Логически прикладной объект (AE);

Прикладные служебные элементы (ASE).

Термин «пользователь» в данном контексте понимается как любой функциональный объект, использующий возможности транспортировки, предоставляемые подсистемой передачи сообщений.

Основным назначением подсистемы передачи сообщений (МТР) является обеспечение средств:

Надежной передачи сигнальной информации "подсистем пользователей" через сеть сигнализации ОКС №7;

Выявления и устранения отказов системы и сети для обеспечения надежной передачи и дос-тавки сигнальной информации.

Функции подсистемы передачи сообщений делятся на три группы:

    функции звена данных сигнализации;

    функции звена сигнализации;

    функции сети сигнализации.

Подсистема МТР обеспечивает передачу информации в неискаженной форме, без потерь, дублирования и ошибок, в установленной последовательности, от одного пункта сигнализации к другому. Причем эта подсистема не анализирует значения передаваемых сигнальных сообщений, формируемых различными подсистемами пользователя. Благодаря такой независимости работы МТР от передаваемых сообщений имеется возможность реконфигурации и гибкого управления сигнальным трафиком при отказах или перегрузках в сети сигнализации. Следует заметить, что выполнение функций передачи сообщений в некоторых случаях выполняется совместно подсистемой МТР и подсистемой SCCP. SCCP и МТР совместно рассматриваются как сетевая подсистема обслуживания, которую можно считать системой доставки сообщений.

Практическая часть

Изучить основные характеристи общеканальной системы сигнализации ОКС №7.

В отчете необходимо представить:

1. Основные харакетиристики сигнальной сети ОКС№7.

2. Структура сигнальной сети ОКС№7.

Контрольные вопросы

1. Перечислите функции главных элементов, которые входят в состав ОКС №7.

2. Приведите основные характеристики сети ОКС №7?

3. Какую структуру имеет сеть ОКС №7?

4. Приведите примеры приложений, обеспечиваемых системой сигнализации ОКС №7.

Лабораторная работа №12

Система сигнализации №7 (Signaling System 7, SS7) была разработана в целях замены предыдущих систем сигнализации по информационным каналам (inband signaling). (В российской технической литературе SS7 называют также общеканальной системой сигнализации, или ОКС-7.) Она служит для обмена информацией управления вызовами между цифровыми коммутирующими станциями для поддержки как голосовых, так и не голосовых служб. Благодаря введению баз данных, SS7 позволяет также предоставлять компаниям и частным лицам такие дополнительные услуги, как звонки с оплатой вызываемым абонентом, идентификация вызывающего абонента и т. п. Сигнальная система №7 образует свою собственную сеть параллельно цифровой сети связи.

Сигнальные точки SS7

Система сигнализации №7 образует свою собственную сеть, сигналы которой передаются по иным путям, нежели голос и данные. До ее появления установление телефонного соединения происходило по тем же физическим каналам, что и разговор между абонентами. Это было возможно благодаря тому, что служебные сигналы никогда не передавались одновременно с пользовательской информацией.

При сигнализации по внешним каналам служебная информация передается по независимым цифровым - так называемым сигнальным - каналам с пропускной способностью 56 или 64 Кбит/с (в США сигнальные каналы имеют пропускную способность преимущественно в 56 Кбит/с, а в России - исключительно в 64 Кбит/с).

В отличие от ISDN, где абоненты и коммутаторы могут посылать друг другу служебные сигналы по каналу D, система сигнализации 7 предусматривает обмен служебной информацией по общим каналам только между компонентами сети. Она используется при взаимодействии между тремя классами устройств: точками коммутации сервиса (Service Switching Point, SSP), точками передачи сигнала (Signal Transfer Point, STP) и точками управления сервисом (Service Control Point, SCP). (Отметим, что как русские, так и английские расшифровки перечисленных аббревиатур могут отличаться.) Обобщенно данные устройства называются сигнальными точками, или узлами SS7.

SSP - это телефонные коммутаторы с SS7-совместимым программным обеспечением; они являются начальными (и конечными) точками сигнальных каналов. STP представляют собой коммутаторы пакетов сети SS7; они принимают поступающие сигнальные сообщения и маршрутизируют их к конечному адресату. SCP содержат базы данных; они предоставляют необходимую информацию для обработки вызовов. Каждое из устройств изображается на диаграммах своим стандартным символом.

Сообщения SS7 формируются на получившей вызов абонента SSP. Как правило, такой коммутатор располагается на телефонной станции оператора связи. Однако это может быть и корпоративная УАТС. Если SSP на вызывающем конце знает, куда маршрутизировать вызов, то он обращается к ближайшему STP с запросом на установление соединения с SSP на принимающем конце (см. Рисунок 1). Так, при междугородном звонке начальный SSP может определить конечный SSP по первым шести цифрам десятизначного номера. Например, в номере 095-253-92-28 первые три цифры - код Москвы, а три следующие - код АТС. В случае, если маршрут неизвестен, как с 800-ми номерами для бесплатных звонков в США, STP обращается к базе данных SCP для получения информации о маршрутизации вызова. 800-е телефонные номера являются, так сказать, виртуальными, они не привязаны к конкретной абонентской линии. Поэтому для определения реального номера STP и вынужден обращаться к базе данных.

Базы данных используются для выполнения функции под названием «трансляция глобального заголовка» (global title translation), с помощью которой STP определяет целевой SSP посредством преобразования глобального цифрового заголовка (набираемого звонящим номера, в том числе номера с оплатой вызываемым абонентом, номера телефонной карты или номера сотового телефона) в соответствующий маршрут. В случае сотовых телефонов процесс трансляции заголовка позволяет установить также идентификационный номер вызываемого мобильного телефона, так как, вообще говоря, сотовые телефоны не имеют телефонных номеров как таковых. Кроме того, с помощью SS7 коммутаторы с SSP могут передавать на SCP информацию об оплате.

Не все STP похожи друг на друга. Местные STP обслуживают только внутренний трафик в пределах локальной области доступа и передачи (Local Access and Transport Area, LATA), в то время как межсетевые STP обеспечивают взаимодействие между LATA. Международные STP осуществляют преобразование несколько отличной американской версии SS7, определенной ANSI в Т1.111, в международную версию, стандартизованную ITU-T в Q.700-Q.741. Шлюзовые STP предоставляют интерфейс между телефонными сетями общего пользования и другими службами, например с операторами сотовой связи.

Своей надежностью телефонная сеть обязана во многом наличию множества резервных каналов между узлами SS7. Практически все STP и SCP реализуются парами, а большинство SSP связаны с двумя и более STP. Во многих случаях соединения проходят по различным физическим путям.

Сигнальные каналы SS7

Сигнальные каналы SS7 характеризуются в соответствии с их ролью в сигнальной сети. Фактически все каналы идентичны в том смысле, что они представляют собой двунаправленные каналы передачи данных, имеют одинаковую пропускную способность и поддерживают одни и те же низкоуровневые протоколы. Главное отличие состоит в их назначении.

Каналы A (от английского access, т. е. «доступ») связывают STP с SSP и SCP. Последние две обобщенно называются конечными сигнальными точками. Каналы A предназначаются исключительно для доставки сигналов от и к конечным точкам. При необходимости, например, передать информацию другому узлу, SSP (или SCP) отправляет ее ближайшему STP по каналу A, а тот уже занимается дальнейшей маршрутизацией сообщения.

Каналы C (от английского cross, т. е. «перекрестный») соединяют между собой образующие пару STP. Они позволяют увеличить надежность сигнальной сети в случаях, когда другие каналы становятся недоступными.

Каналы B, D или B/D (от английского bridge, т. е. «мост», и diagonal, т. е. «диагональ») связывают две пары STP между собой. Их основная функция состоит в передаче сигналов по сигнальной сети. Каналы B связывают STP одного уровня, а каналы D - STP на различных уровнях иерархии. Однако из-за отсутствия четкой иерархии такие каналы маркируются иногда как B/D.

Каналы E (от английского extended, т. е. «расширенный») обеспечивают резервные соединения конечных точек сигнальной сети с другой парой STP на случай, если ближайшая пара STP окажется недоступна по каналам А. Каналы E могут и отсутствовать, все зависит от реализованного уровня избыточности.

Каналы F (от английского fully associated, т. е. «полностью ассоциированные») реализуют прямое соединение между двумя конечными сигнальными точками. Однако их применение ограничено из-за того, что они обходят предусматриваемые STP функции защиты.

Формат сигнальных пакетов

Информация передается по сигнальным каналам в виде сообщений, называемых сигнальными пакетами (Signal Unit, SU). Протокол SS7 определяет три типа сигнальных пакетов:

  • сигнальный пакет с сообщением (Message Signal Unit, MSU);
  • сигнальный пакет с состоянием канала (Link Status Signal Unit, LSSU);
  • сигнальный пакет с заполнением (Fill-in Signal Unit, FISU).

Сигнальные пакеты передаются по любому действующиму каналу в обоих направлениях. При отсутствии MSU или LSSU для передачи сигнальная точка будет передавать по каналу FISU. В соответствии со своим названием, FISU «заполняют» сигнальный канал в отсутствии полезной информации.

Передаваемая информация разбивается на блоки длиной по восемь бит, называемые октетами. Сигнальные пакеты отделяются друг от друга ограничителем «01111110». Этот флаг сигнализирует одновременно о конце предыдущего пакета и о начале следующего.

Все три типа сигнальных пакетов имеют ряд общих полей (см. Рисунок 2). Кроме флага, это поля контрольной суммы, указателя длины, а также BSN/BIB и FSN/FIB.

Контрольная сумма служит для проверки наличия в передаваемом пакете ошибок. При наличии ошибок принимающая сторона запрашивает повторную передачу.

Указатель длины сообщает о числе октетов между данным полем и контрольной суммой. Он служит, в частности, для установления типа сигнального пакета. Как видно из Рисунка 2, указатель длины для пакета FISU равен 0, для LSSU - 1 или 2, а для MSU он больше 2.

BSN/BIB и FSN/FIB содержат обратные порядковый номер и сигнальный бит (BSN/BIB) и прямые порядковый номер и сигнальный бит (FSN/FIB). Эти поля предназначены для подтверждения приема SU и для обеспечения приема пакетов в том же порядке, в каком они были переданы. Они также служат для обеспечения контроля за потоками.

FISU не имеют никаких других полей, кроме перечисленных. Как уже говорилось, их назначение состоит в заполнении канала в отсутствии LSSU или MSU для передачи. Они позволяют, кроме того, осуществлять непрерывный мониторинг качества связи посредством проверки правильности контрольной суммы в отсутствии сигнального трафика.

LSSU служит для передачи информации о состоянии канала между узлами по обеим сторонам канала. Эта информация размещается в поле состояния. Она сообщает о качестве принимаемого сигнального трафика, о состоянии процессоров и т. п. LSSU не содержат никакой адресной информации, так как они пересылаются только между двумя соседними точками.

Вся сигнальная информация об установлении и разрыве соединений, о запросах и ответах базы данных и управлении сетью SS7 передается в пакетах MSU. В свою очередь, MSU делятся на несколько видов в соответствии с их функцией и содержимым: управление сигнальной сетью, тестирование и эксплуатация сигнальной сети, SSCP и ISUP. Тип содержимого пакета указывается в октете служебной информации. Само же содержимое размещается в поле сигнальной информации.

Стек протоколов SS7

Стек протоколов SS7 состоит из четырех слоев, или уровней (см. Рисунок 3). Нижние три уровня объединены под общим названием «блок передачи сообщений» (Message Transfer Part, MTP). Три уровня MTP соответствуют трем нижним уровням семиуровневой модели OSI.

MTP уровень 1 аналогичен физическому уровню модели OSI. Он определяет различные физические интерфейсы между сигнальными точками. Физические каналы между STP и их локальными SSP и SCP имеют, как правило, пропускную способность 56 или 64 Кбит/с; физические же каналы между самими STP имеют обычно пропускную способность 1,544 Мбит/с и выше.

MTP уровень 2 соответствует канальному уровню модели OSI. Он обеспечивает обнаружение и исправление ошибок с использованием 16-разрядного циклического избыточного кода. При обнаружении ошибки он запрашивает повторную передачу.

MTP уровень 3 выполняет те же функции, что и сетевой уровень модели OSI. Он осуществляет разбор сообщения для определения того, кому оно предназначено. Если адресат сообщения находится в сфере действия местной сигнальной точки, то третий уровень доставляет сообщение по назначению; в противном случае, он осуществляет маршрутизацию сообщения для определения следующего узла на пути к адресату.

Кроме того, третий уровень отвечает за определение состояния узлов и каналов: наступления аварии, надежности функционирования, состояния перегрузки, факта отключения/включения. Он выбирает альтернативные маршруты и посылает управляющие сообщения об изменениях в состоянии каналов на соседние сигнальные точки.

Четвертый уровень стека SS7 охватывает с четвертого по седьмой уровни модели OSI. Он состоит из двух параллельных комплектов протоколов: пользовательского блока ISDN (ISDN User Part, ISUP) и блока управления сигнальным соединением/прикладного блока поддержки транзакций (Signaling Connection Control Part/Transaction Capabilities Application Part, SCCP/TCAP).

ISUP порождает, управляет и завершает как ISDN-, так и не-ISDN-соединения между устройствами в телефонной сети общего пользования. Таким образом, несмотря на свое название, ISUP служит для осуществления как ISDN-, так и не-ISDN-вызовов. Однако в случае ISDN он поддерживает такие дополнительные виды услуг, как переадресация вызова, идентификация вызывающей линии, закрытые пользовательские группы, межпользовательская сигнализация и т. п. В качестве транспорта ISUP использует непосредственно MTP. В случае, если вызов порождается и завершается на одном и том же коммутаторе, сигнализация ISUP не применяется.

SCCP служит для поддержки сервисов между STP и базами данных. Соответствующий транспортному уровню модели OSI, SCCP предоставляет более подробную адресную информацию, нежели MTP, так как последний идентифицирует только конечную сигнальную точку. SCCP же позволяет идентифицировать конкретную базу данных на SCP.

Адресуемый с помощью SCCP, сам запрос к базе данных передается и возвращается TCAP. В сообщениях TCAP размещается такая информация, как сведения о маршруте, чтобы ISUP мог узнать, кому адресовать вызов. После завершения разговора TCAP может передать требуемую информацию об оплате в соответствующую учетную базу данных. В случае, например, мобильных пользователей TCAP передает идентификационные сообщения и извещает базу данных SCP о местонахождении сотовых телефонов.

ОКС-7 В России

С переводом международных сетей связи в цифровой формат задача внедрения соответствующих систем и, как следствие, ОКС-7 встала и перед российской отраслью связи. Принципы построения национальной сигнальной сети заложены в «Основных положениях по структуре сети ОКС-7 РФ». Вместе с тем создаваемая сеть отличается как от американского, так и от международного стандартов наличием ряда дополнительных сообщений и другими особенностями.


Дмитрий Ганьжа - ответственный редактор LAN. С ним можно связаться по адресу: [email protected] .

Ресурсы

Хорошее интерактивное введение в SS7 с описанием протоколов MTP, ISUP, SSCP и TCAP можно найти на сервере компании Microlegend http://www.microlegend.com/whatss7.htm .

Краткий курс для самостоятельного изучения с контрольными вопросами имеется на сервере Bell Atlantic http://www.webproforum.com/bell-atlantic2/full.html .

Принципы внедрения и построения сети ОКС-7 в России изложены в докладе «Система общеканальной сигнализации №7» http://www.astu.astranet.ru/rus/astu/ library/telecom/netcomm/seti/index.htm .

Подробное изложение SS7 дается в книге Тревиса Рассела «Signaling System #7», 2-е издание, изд-во McGraw-Hill, 1998 г.

1. Определение
2. Что такое сигнализация?
3. Что такое внеполосная сигнализация?
4. Архитектура сигнальной сети.
5. Североамериканская архитектура сигнализации.
6. Основная сигнальная архитектура.
7. Сигнальные звенья.
8. Типы звеньев ОКС №7
9. Пример утановки основного вызова.
10. Пример запроса базы данных.
11. Подсистема управления соединением сигнализации. (SCCP).
12. Прикладная подсистема возможностей транзакций. (TCAP).
13. Стек протокола.
14. Подсистема передачи сообщений (MTP).
15. Подсистема пользователя сети с интеграцией служб (ISUP).

ОПРЕДЕЛЕНИЕ

ОКС №7 - архитектура для выполнения внеполосной сигнализации в поддержке создания вызова, биллинга, маршрутизации, функций обмена информацией в ТфОП (Телефонная сеть Общего Пользования). Она определяет функции, которые выполняются общеканальной сигнальной сетью, и протоколы для успешного исполнения.

ЧТО ТАКОЕ СИГНАЛИЗАЦИЯ?

Сигнализация - обмен информацией между компонентами вызова, необходимыми для обеспечения и поддержания услуг.
При использовании ТфОП мы обмениваемся сигналами с сетевыми элементами. Примеры сигнализации между абонентом и телефонной сетью включают: набор цифр, обеспечение "ответа станции", доступ к речевому каналу, посылку тона "ожидание вызова", кодовый вызов *66 (для автодозвона), и т.п..
ОКС №7 - средство, с помощью которого элементы телефонной сети обмениваются информацией. Информация переносится в форме сообщений. Для примера, сообщения ОКС №7 могут переносить следующую информацию:

  • Я пересылаю Вам вызов установленный от 212-555-1234 к 718-555-5678. Найдите это в соединительном пути 067.
  • Кто-то только что набрал 800-555-1212. Где Я определю вызов?
  • Названный абонент для вызываемого соединительного пути 11 занят. Реализуйте вызов и дайте тон "занято".
  • Маршрут на XXX перегружен. Пожалуйста, не посылайте какие – либо сообщения на XXX, если их приоритет не будет выше 2.
  • Я занимаю соединительный путь 143 для эксплуатации.

ОКС №7 характеризуется высокоскоростной передачей пакетов данных и внеполосной сигнализацией.

ЧТО ТАКОЕ ВНЕПОЛОСНАЯ СИГНАЛИЗАЦИЯ?

Внеполосная сигнализация - это сигнализация, которой не требуются те же пути установления соединения, какие требуются для разговора. Мы предполагаем использование сигнализации являющейся внутриполосной. Мы слышим звуковой сигнал абонента, набираем цифры, слышим звуковой сигнал по одному каналу в одной паре проводов. Когда вызов установлен, мы говорим по тому же маршруту, что использовался для сигнализации. Традиционная телефония работает таким же образом. Сигналы для установки вызова между одним коммутатором и другим всегда проходят по тому же соединительному пути, который в конечном счете несет вызов. Сигнализация приобрела форму серий многочастотных тонов.
Внеполосная сигнализация устанавливает отдельный цифровой канал для обмена сигнальной информацией. Этот канал называется сигнальным звеном. Сигнальное звено используется для переноса всех необходимых сигнальных сообщений между узлами. Таким образом, использование сигнального звена для установки вызова, набора цифр, резервирования соединительного пути и передачи другой информации между коммутаторами, лучше, чем использование тракта, который в конце концов переносит речь.
Сегодня, сигнальная информация переносится звеньями со скоростью 56 или 64 Кбит/сек. Интересно отметить, что если ОКС №7 используется только для сигнализации между сетевыми элементами, D-канал ISDN (Цифровой Сети с Интеграцией Служб) расширяет понятие внеполосной сигнализации на интерфейсе между абонентом и коммутатором. С услугой ISDN, сигнализация, которая должна передаваться между пользовательской станцией и локальным коммутатором, переносится по отдельному цифровому каналу называемому D-канал. Голос или данные, которые включает в себя вызов, переносятся по одному или более B-каналам.

Зачем нужна Внеполосная сигнализация?

Внеполосная сигнализация имеет различные преимущества, которые делают её более предпочтительной, чем традиционная внутриполосная сигнализация:
· поддерживает передачу большого объёма данных при высоких скоростях (при
скорости 56Кбит/сек данные переносятся значительно быстрее, чем при помощи
многочастотных импульсов)
· может осуществляться в течение всего вызова, а не только вначале.
· осуществляет сигнализацию к сетевым элементам, у которых нет прямого
соединения.

АРХИТЕКТУРА СИГНАЛЬНОЙ СЕТИ

Как бы выглядел маршрут, если сигнализация происходила бы по каналу отличному от канала, поддерживающего передачу речи и данных? В самом простейшем случае, один из маршрутов распределяется между каждой взаимосвязанной парой коммутаторов.
Для уменьшения занимаемого объема, все сигнальные трафики между двумя коммутаторами передаются по одному звену. Этот тип сигнализация известен как связанная сигнализация, и показан ниже на рисунке 1.


Рисунок 1. Связанная Сигнализация

Работа связанной сигнализации эффективна, пока требуется только сигнализация между одним коммутатором, соединенным с другим.
Если бы установка и управление вызовом было единственным приложением ОКС №7, связанная сигнализация была бы проще и эффективнее. Фактически, значительная часть внеполосной сигнализации, развернутой в Европе, сегодня использует связанный режим.
Североамериканские разработчики, тем не менее, захотели создать сигнальную сеть, которая позволяла бы любому узлу обмениваться сигналами с любым другим совместимым с ОКС №7 узлом. Несомненно, связанная сигнализация становится более сложной, когда она используется для обмена сигналами между узлами, которые не имеют прямого соединения. Поэтому и была создана Североамериканская архитектура ОКС №7.

СЕВЕРОАМЕРИКАНСКАЯ АРХИТЕКТУРА СИГНАЛИЗАЦИИ

Североамериканская архитектура определяет совершенно новую и отдельную сигнальную сеть. Сеть создается из следующих трех основных компонентов, соединенных сигнальными звеньями:
· SSP - телефонные коммутаторы, поддерживающие совместимое с ОКС №7
программное обеспечение и ограничивающиеся сигнальными звеньями. Они
обычно порождают, завершают, или переключают вызовы.
· STP - коммутаторы пакетов сети ОКС №7. Они получают и распределяют
поступающие сообщения сигнализации к месту назначения. Они также выполняют
специализированные функции маршрутизации.
· SCP - базы данных, которые обеспечивают информацию, необходимую для
улучшения обработки вызова.

ОКС №7 критична к обработке вызова. Пока SSP не могут обмениваться сигналами, они не могут реализовывать вызовы между коммутаторами. По этой причине, сеть ОКС №7 создана с использованием сложной архитектуры. Каждый отдельный элемент должен удовлетворять всем необходимым требованиям для доступности. Наконец, был определен протокол между взаимосвязанными элементами, для обеспечения маршрутизации сигнального трафика в обход конфликтных ситуаций, которые могут возникнуть в сигнальной сети.
Для простоты передачи и понимания при изображении сети ОКС №7 используется стандартный комплект символов. На рисунке 2 показаны символы, которые используются для изображения элементов сети ОКС №7.


Рисунок 2. Сигнальные сетевые элементы

STP и SCP образуют пары. Пока элементы пары не объединены, они делают излишние операции, выполняя одну и ту же логическую функцию. При изображении сложных сетевых диаграмм, эти пары могут быть изображены как один элемент для простоты, как показано на рисунке 3.


Рисунок 3. STP и SCP пары

ОСНОВНАЯ СИГНАЛЬНАЯ АРХИТЕКТУРА

Рисунок 4 показывает пример того, как основные элементы сети ОКС №7 развертываются, чтобы сформировать две взаимосвязанных сети.

Рисунок 4. Пример сетей

Отметим следующие точки:
1. STP W и X выполняют идентичные функции. Они излишни. Вместе, они
называются соединенной парой STP. Аналогично, STP Y и Z формируют
соединенную пару.
2. Каждый SSP имеет два звена (или комплект звеньев), по одному для каждой
соединенной пары STP. Вся сигнализация ОКС №7 в остальной части мира
осуществляется по этим звеньям. Поскольку STP, объединенные в пару, излишни,
сообщения посылаются по эквивалентным звеньям.
3. Соединенные пары STP образуются звеном (или комплектом звеньев).
4. Две соединенные пары STP взаимосвязаны четырьмя звеньями (или комплектами
звеньев). Эти связи называются четверкой.
5. SCP обычно (хотя и не всегда) образуют пары. Как и STP, соединенные пары SCP
будут функционировать идентично. Пары SCP также называются соединенными
парами. Имейте в виду, что они непосредственно не соединяются парой звеньев.
6. Сигнальные архитектуры как, например, эта, которая обеспечивает косвенные
маршруты сигнализации между сетевыми элементами, обеспечивают
квазисвязанную сигнализацию.

СИГНАЛЬНЫЕ ЗВЕНЬЯ

Сообщения ОКС №7 передаются между элементами сети со скоростью 56 или 64 Кбит/сек по двунаправленным каналам, называемыми сигнальными звеньями, с помощью внеполосной сигнализации. По сравнению с внутриполосной сигнализацией, внеполосная сигнализация обеспечивает:

Установку вызова за более короткое время (по сравнению с внутриполосной
сигнализацией, использующей многочастотные сигналы)
более эффективное использование речевых каналов
поддержку услуг Интеллектуальной Сети, которая требует передачу в сетевые
элементы без речевых каналов (например, системы баз данных)
улучшенный контроль за незаконным использованием сети

Пункты сигнализации

Каждый пункт сигнализации в сети ОКС №7 однозначно опознается числовым кодом пункта. Коды пункта передаются в сигнальных сообщениях для определения источника и расположения каждого сообщения. Каждый пункт сигнализации использует таблицу маршрутизации, чтобы выбрать соответствующий маршрут сигнализации для каждого сообщения.

Есть три типа пунктов сигнализации в сети ОКС №7 (рисунок 5):

Узел Коммутации Услуг (SSP)
Транзитный Пункт Cигнализации (STP)
Пункт Контроля Сигнализации (SCP)


Рисунок 5. Пункты сигнализации

SSP - коммутаторы, которые порождают, завершают, или дублируют вызовы. SSP посылает сигнальные сообщения на другие SSP для установления, управления и реализации речевых каналов, требуемых для завершения вызова. SSP может также послать сообщение-запрос в централизованную базу данных (SCP), чтобы определить, как распределять вызов (например, бесплатно 1-800/888 вызывает Северную Америку). SCP посылает ответ в SSP, содержащий номер маршрутизации, связанный с коммутируемым числом. Альтернативный номер маршрутизации может использоваться SSP, если первое число занято, или вызов безответный в пределах определенного промежутка времени. Фактические характеристики вызова изменяются в зависимости от сети и от услуги.
Сетевой трафик между пунктами сигнализации может распределяться через коммутатор пакетов. Вызванный STP распределяет каждое поступающее сообщение на исходящей связи сигнализации, базирующейся на информации маршрутизации, содержащейся в сообщении ОКС №7. Поскольку это выступает в качестве сетевого узла, STP обеспечивает улучшенное использование сети ОКС №7, устраняя потребность в прямых связях между пунктами сигнализации. STP может выполнять трансляцию глобального заголовка - процедуру, с помощью которой положение пункта сигнализации определяется из цифр в сигнальном сообщении (например, набранное число 800, номер телефонной карточки, или идентификация номера мобильного абонента). STP может также выступить в качестве "firewall", чтобы отгородить сообщения ОКС №7, поступающие из других сетей.

Поскольку сеть ОКС №7 критична к обработке вызова, SCP и STP обычно объединяются в конфигурации пар в отдельных физических позициях, чтобы гарантировать исполнение сетевой услуги в случае неудачи на одной из них. Звенья между пунктами сигнализации также объединяются в пары. Трафик распространяется через все звенья, включая пучки звеньев. Если одна из связей разрушается, сигнальная передача идет через другие звенья, включая пучки звеньев. Протокол ОКС №7 обеспечивает как исправление ошибок, так и способность повторной передачи, обеспечивая непрерывность услуги в случае нарушения связи.

ТИПЫ ЗВЕНЬЕВ ОКС №7

Сигнальные звенья ОКС №7 характеризуются согласно их использованию в сигнальной сети. Фактически все звенья идентичны в том, что они передают данные по двунаправленным звеньям со скоростью 56 Кбит/сек и 64 Кбит/сек, которые поддерживают нижние уровни протокола, что является отличием их использования в пределах сигнальной сети.


Рисунок 6. Типы звеньев

Звенья А соединяют STP с SSP или с SCP, которые вместе являются конечным пунктом сигнализации (“А” – доступ) . Звенья А используются для единственной цели - доставлять сигналы к или от конечных пунктов сигнализации (они могли точно так же доставлять их к начальному пункту сигнализации).
Сигнализация того, что из SSP или SCP должно быть послано сообщение в любой другой узел, передается по любому из звеньев А в домашний STP, который, в свою очередь, обрабатывает или распределяет сообщения.
Аналогично, сообщения, предназначенные для SSP или SCP распределяются в одном из домашних STP, который перешлет их адресуемому узлу по его звену А.

Звенья С - звенья, которые соединяют взаимосвязанные STP. Они предназначены повышать надежность сигнальной сети, в случаях, где одно или несколько звеньев недоступны. “C” - пересечение.

Звенья B, D

Звенья В, звенья D, и звенья B/D объединяются в две соединенные пары STP, называемые также звенья В, звенья D, или звенья B/D. Независимо от их названия, их функцией является перенос сигнальных сообщений от начальной точки входа в сигнальную сеть к месту назначения. “B” - мост, и описывает четверку звеньев, соединенных в одинаковые пары STP. “D” - диагональ, и описывает четверку звеньев, образующих соединенные пары STP на других иерархических уровнях. Поскольку нет ясной иерархии, связанной с соединением между сетями, взаимосвязанные звенья называются также B, D, или B/D звенья.

При подключении SSP к своей домашней паре STP комплектом звеньев, повышенная надежность может быть обеспечена добавлением дополнительного комплекта звеньев ко второй паре STP. Эти звенья называются E (“Е” - расширенные) звенья и обеспечивают резервную связность в сети ОКС №7, в случае, если домашние STP не могут быть достигнуты через звенья. Если сеть ОКС №7 включает A, B/D, и C звенья, звенья Е могут или не могут применяться на усмотрение сетевого провайдера. Решение развернуть ли звено E может быть принято при сравнении стоимости развертывания с повышением надежности.

Звенья F (“F” - полностью связанные)- звенья, которые непосредственно соединяют два конечных пункта сигнализации. Звенья F допускаются только в связанной сигнализации. Поскольку они затрагивают характеристики безопасности, предусматриваемые STP, звенья F обычно не развертываются между сетями. Их использование в пределах индивидуальной сети - на усмотрении сетевого провайдера.

ПРИМЕР УСТАНОВКИ ОСНОВНОГО ВЫЗОВА

Перед более детальным рассмотрением, было бы полезно рассмотреть различные основные вызовы и пути, по которым они устанавливаются в сети ОКС №7.


Рисунок 7. Пример Установки Основного Вызова

3, 4 - Начальное Адресное Сообщение (IAM)
7, 8 -Полный Адрес (ACM)
11,12 - Сообщение "Ответ" (ANM)
14 - Сообщение "Освобождение" (REL)
16,17 - Сообщение "Освобождение сделано" (RLC)

В этом примере, абонент с коммутатора А вызывает абонента с коммутатора B.
1. Коммутатор А анализирует набранные цифры и определяет, что вызов нужно
послать коммутатору B.
2. Коммутатор А выбирает свободный соединительный путь между ним самим и
коммутатором B и формирует начальное адресное сообщение (IAM), основное
сообщение для инициации вызова. IAM адресуется на коммутатор B. Определяется
вызывающий коммутатор (коммутатор A), вызываемый коммутатор (коммутатор B),
выбранный соединительный путь, вызывающий и вызываемый номера, а также
другая информация.
3. Коммутатор А указывает одно из звеньев А(например, AW) и передает сообщение по
звену маршрутизации к коммутатору B.
4. STP W получает сообщение, проверяет свою метку маршрутизации и определяет что
это, для пересылки на коммутатор B; сообщение передается по звену BW.
5. Коммутатор B принимает сообщение. В анализе сообщения определяется, что
обслуживается вызываемый номер и, что он не занят.
6. Коммутатор B формирует полный адрес (ACM), который указывает, что IAM достиг
места назначения. Сообщение опознает вызывающий коммутатор (A), вызываемый
коммутатор (B) и избранный соединительный путь.
7. Коммутатор B выбирает одно из звеньев А (например, BX) и передает ACM по
звену маршрутизации коммутатору А. В то же самое время, завершает маршрут
вызова в обратном направлении (к коммутатору A), посылает звуковой
сигнал по этому соединительному пути к коммутатору A и вызывает линию
требуемого абонента.
8. STP X получает сообщение, проверяет свою метку маршрутизации и определяет что
это, чтобы передать коммутатору A. Передает сообщение по звену AX.
9. По получении ACM, коммутатор А соединяет линию вызывающего абонента с
выбранным соединительным путем в обратном направлении (так, что вызывающий
абонент может услышать звуковой сигнал, посылаемый коммутатором B).
10. Когда вызываемый абонент поднимает трубку, коммутатор B формирует сообщение
"ответ" (ANM), опознавая вызывающий коммутатор (A), вызываемый коммутатор (B)
и избранный соединительный путь.
11. Коммутатор B выбирает то же звено А, по которому передается полный адрес
(звено BX), и посылает сообщение "ответ". На этот раз, соединительный путь также
должен подключаться к вызываемой линии в обоих направлениях (для возможности
разговора).
12. STP X распознает, что ANM поступило для коммутатора A и пересылает по звену
AX .
13. Коммутатор А обеспечивает подключение вызывающего абонента к исходящему
соединительному пути (в обоих направлениях) и осуществление разговора.
14. Если вызывающий абонент отключается сначала (во время разговора), коммутатор
А сгенерирует сообщение "освобождение", адресованное коммутатору B по
соединительному пути, связанному с вызовом. Посылается сообщение по звену AW.
15. STP W принимает сообщение "освобождение", определяет, что это предназначено
коммутатору B, и передает его, используя звено WB.
16. Коммутатор B получает сообщение "освобождение", разъединяет соединительный
путь и абонентскую линию, возвращает соединительный путь в свободное
состояние, генерирует сообщение "освобождение сделано", адресованное обратно
коммутатору A; передает это по звену BX. Сообщение "освобождение сделано"
идентифицирует использованный соединительный путь для переноса вызова.
17. STP X принимает сообщение "освобождение сделано", определяет, что это
адресуется коммутатору A и пересылает его по звену AX.
18. По получении сообщения "освобождение сделано", коммутатор А освобождает
соединительный путь.

ПРИМЕР ЗАПРОСА БАЗЫ ДАННЫХ

Люди обычно знакомы с бесплатными услугами 800 (или 888) , но эти номера имеют дополнительные возможности, благодаря сети ОКС №7. 800 - виртуальные номера телефонов. Хотя они указывают на реальные номера телефонов, они не присваиваются непосредственно линии абонента.
Когда абонент набирает 800 , это является сигналом для коммутатора приостановить вызов и найти дальнейшие инструкции в базе данных.
База данных обеспечит или реальный номер телефона, на который должен быть направлен вызов, или определит другую сеть, на которую вызов должен быть послан для дальнейшей обработки.
Так как ответ от базы данных мог бы быть одинаковым для каждого вызова (как, например, если у вас есть персональный номер 800), это можно изменить, основываясь на номере вызывающего, времени суток, дня недели, или многих других показателей.
Следующий пример показывает как распределяется вызов 800.


Рисунок 8. Пример Запроса Базы Данных

1. Абонент, обслуживаемый коммутатором А, хочет зарезервировать арендную плату за
автомобиль в ближайшей компании. Он набирает 800.
2. Когда абонент закончил набирать номер, коммутатор распознает, что это - вызов 800
и, что это требует надлежащей обработки.
3. Коммутатор А формирует сообщение запроса 800, включая вызывающий и
вызываемый номера, и пересылает это любому из своих STP (например, X) по своим
звеньям А к соответствующему STP (AX).
4. STP X определяет, что полученный запрос - это запрос 800, и выбирает базу данных,
подходящую для ответа на запрос (например, M).
5. STP X пересылает запрос на SCP M по соответствующему звену А (MX). SCP M
получает запрос, извлекает пришедшую информацию, и (основываясь на своих
записях) выбирает или реальный телефонный номер или сеть (или и то и другое), на
которые должен быть послан вызов.
6. SCP M формирует сообщение ответа с необходимой информацией для правильной
обработки вызова, адресует его коммутатору A, выбирает STP и звено А (например,
MW), посылает ответ.
7. STP W получает сообщение ответа, распознает, что это предназначается коммутатору
A и передает его в А через AW.
8. Коммутатор А принимает ответ и использует информацию, чтобы определить куда
должен быть послан вызов, затем выбирает соединительный путь в этом
направлении, генерирует IAM, и продолжает (как это сделано в предшествующем
примере) установку вызова.

ПОДСИСТЕМА УПРАВЛЕНИЯ СОЕДИНЕНИЕМ СИГНАЛИЗАЦИИ (SCCP)

SCCP обеспечивает ориентированные и неориентированные на соединение сетевые услуги уровня 3 подсистемы передачи сообщений (MTP).
Пока уровень 3 MTP (Подсистемы Передачи Сообщений) предоставляет коды пункта, для допуска сообщений, которые должны были адресоваться в специальные пункты сигнализации, SCCP обеспечивает номера подсистемы для допуска сообщений, которые должны были адресоваться в специальные приложения (называемые подсистемами) в этих пунктах сигнализации. SCCP используется в качестве транспортного уровня для услуг TCAP (Прикладной Подсистемы Возможностей Транзакций), как например, freephone (800/888), визитная карточка, локальный мобильный номер, беспроволочное вещание, и персональные услуги связи (Сеть Персональной Связи).

Трансляция глобальных заголовков

SCCP также обеспечивает средства, которыми STP (Транзитный Пункт Сигнализации) может выполнить трансляцию глобальных заголовков - процедуру, с помощью которой расположение пункта сигнализации и номера подсистемы определяется из цифр (то есть, глобальное имя), представленных в сигнальном сообщении.
Глобальный заголовок может быть любой последовательностью цифр (например, коммутируемое 800/888 число, номер визитной карточки, или идентификация номера мобильного абонента), соответствующей заказанной услуге. Поскольку STP обеспечивает трансляцию глобальных заголовков, создавая пункты сигнализации, не нужно знать назначение кода пункта или номера подсистемы соответствующей услуги. Только STP нужно поддерживать базу данных назначения кодов пунктов и номеров подсистемы, связанных со специфическими услугами и возможными назначениями.

Формат сообщения SCCP

Индикатор услуги SIO (Байта Служебной Информации) кодируется “3” (в двоичной системе 0011) для SCCP. SCCP сообщения содержатся в пределах SIF (Поля Сигнальной Информации) MSU (Значащей Сигнальной Единицы). SIF содержит метку маршрута, сопровождаемую содержанием сообщения SCCP. Сообщение SCCP содержит однобайтовое поле " тип сообщения", которое определяет содержимое остатка сообщения (рисунок 9)


Рисунок 9. Формат сообщения SCCP

Каждое сообщение SCCP содержит обязательную фиксированную часть (обязательные параметры фиксированной длины), обязательную переменную часть (обязательные параметры переменной длины), и необязательную часть, которая может содержать поля фиксированной и переменной длины. Каждый параметр необязательной части распознается однобайтовым кодом параметра, сопровождаемого полем указателя длины.Необязательные параметры могут располагаться в любом порядке. Если присутствуют необязательные параметры, в конец их ставится байт, содержащий все нули.

ПРИКЛАДНАЯ ПОДСИСТЕМА ВОЗМОЖНОСТЕЙ ТРАНЗАКЦИЙ (TCAP)

TCAP позволяет расширить улучшенные интеллектуальные сетевые услуги, поддерживая организацию обмена информацией между пунктами сигнализации, использующими услугу SCCP, неориентированную на соединение. SSP (Узел Коммутации Услуг), используя TCAP, запрашивает SCP, для определения номера маршрута, связанного с набираемыми цифрами 800, 888, или 900 . SCP использует TCAP, чтобы возвратить ответ, содержащий номер маршрута (или ошибку или компонент отказа) обратно в SSP. Вызовы по телефонной карточке также подтверждаются, используя запрос и сообщение ответа TCAP. Когда мобильный абонент движется в зону нового коммутационного центра мобильной связи, встроенный объединенный регистр гостевой информации получателя услуги запрашивает HLR (Основной Регистр Местоположения), используя подсистему администрирования. Информация передается в пределах сообщений TCAP.
Сообщения TCAP включаются как часть сообщения SCCP в MSU. Сообщение состоит из протокольной и компонентной части.

Протокольная часть

Протокольная часть содержит идентификатор типа пакета. Есть семь типов пакетов:
Однонаправленный: передача компонентов только в одном направлении (без
ожидания)
Запрос с Разрешением: вводит протокол TCAP (например, запрос 1-800). Узел
назначения может закончиться транзакцией.
Запрос без Разрешения: вводит протокол TCAP. Узел назначения не может
закончиться транзакцией.
Ответ: окончание протокола TCAP. Ответ на запрос 1-800 с разрешением может
содержать номер маршрута, связанный с номером 800.
Разговор с Разрешением: продолжает протокол TCAP. Узел расположения может
закончиться транзакцией.
Разговор без Разрешения: продолжает протокол TCAP. Узел расположения не
может закончиться транзакцией.
Отказ: завершает протокол в случае аварийной ситуации.

Раздел протокола также содержит поля, вызывающие и отвечающие протоколам ID , которые соединяют протокол TCAP со специфическим приложением установления и расположения пунктов сигнализации соответственно.

Компонентная Часть

Компонентная часть содержит компоненты. Есть шесть типов компонентов:
Вызов (последний): вызов операции. Например, запрос с разрешением может
включать компонент вызова (последний), чтобы потребовать у SCP перевод
коммутируемого числа 800. Компонент - "последний " компонент в запросе.
Вызов (не последний): подобный компоненту вызова (последний), отличается от
предыдущего тем, что следует за одним или более компонентов.
Результат возврата (последний): возвращает результат введенной операции.
Компонент - "последний " компонент в ответе.
Результат возврата (не последний): подобный результату возврата (последний),
отличие - компонент следует за одним или более компонентов.
Ошибка возврата: сообщает о неудачном завершении введенной операции.
Отказ: указывает, что был получен неправильный тип пакета или компонент.

Компоненты включают параметры, которые содержат данные специализированного приложения, переносящиеся TCAP без проверки.

СТЕК ПРОТОКОЛА

Аппаратное и программное обеспечение протокола ОКС №7 разделяются на функциональные блоки, называемые "уровнями". Эти уровни отображаются свободно в семиуровневой МВОС (Модель Взаимосвязи Открытых Систем), определяемой Международной Организацией Стандартов.


Рисунок 10. МВОС и Стек протокола ОКС №7

Подсистема Передачи Сообщений (MTP)

MTP разделяется на три уровня.
Самый низкий - уровень 1, эквивалентен физическому слою МВОС. Уровень 1 MTP определяет физические, электрические, и функциональные характеристики цифрового сигнального звена. Физические интерфейсы включают E-1 (2048 Кбит/сек; 32 64 Кбит/сек каналы), DS-1 (1544 Кбит/сек; 24 64Кбит/сек каналы), V.35 (64 Кбит/сек), DS-0 (64 Кбит/сек), и DS-0A (56 Кбит/сек).
Уровень 2 MTP гарантирует точность сквозной передачи сообщения через сигнальное звено. Уровень 2 осуществляет управление потоком, подтверждение правильности последовательности сообщения, и проверку ошибок. Когда встречается ошибка в сигнальном звене, сообщение (или комплект сообщений) передается
повторно. Уровень 2 MTP эквивалентен канальному уровню МВОС.
Уровень 3 MTP обеспечивает маршрутизацию сообщения между пунктами сигнализации в сети ОКС №7. Уровень 3 MTP переадресовывает трафик от неисправных звеньев сигнальных пунктов, управляет трафиком, когда происходит перегрузка. Уровень 3 MTP эквивалентен сетевому уровню МВОС.

Подсистема Пользователя Сети с Интеграцией Служб (ISUP) - часть Цифровой Сети с Интеграцией Служб (ISDN)

Подсистема Пользователя Сети с Интеграцией Служб определяет протокол, использованный в установке, управляет и реализует соединительные пути, которые переносят сообщения и данные между конечными линиями обмена (например, между вызывающей стороной и вызываемой стороной). ISUP используется как для ISDN, так и для вызовов вне ISDN. Тем не менее, вызовы, которые возникают и завершаются таким образом, не используют сигнальную ISUP.

В некоторых странах (например, в Китае, Бразилии), TUP используется, для поддержания и отказа от основной установки вызова. TUP применяется только в аналоговых цепях. Во многих странах ISUP заменила TUP при управлении вызовами.

Подсистема Управления Соединением Сигнализации (SCCP)

SCCP обеспечивает ориентированные и неориентированные на соединение сетевые услуги и трансляцию глобальных заголовков на вышеуказанном уровне 3. Глобальный заголовок - адрес (например, коммутируемое число 800 , номер телефонной карточки, или идентификация номера мобильного абонента), который переводится SCCP в код пункта назначения и номера подсистемы. Номер подсистемы однозначно распознает
приложение в назначенном сигнальном пункте. SCCP используется в качестве транспортного уровня для обслуживания основной TCAP.

Прикладная Подсистема Возможностей Транзакций (TCAP)

TCAP поддерживает обмен неориентированными на соединение данными между приложениями через сеть ОКС №7, используя услугу SCCP, неориентированную на соединение. Запросы и ответы, посланные между SSP и SCP передаются в сообщения TCAP. Например, SSP посылает TCAP запрос определить номер маршрута, связанный с коммутируемыми числами 800/888 и проверить Персональный Идентификационный
Номер Пользователя. В мобильных сетях (IS-41 и GSM), TCAP несет сообщения Подсистемы Мобильных Приложений, пересылаемые между мобильными коммутаторами и базами данных, чтобы поддержать аутентификацию пользователя, идентификацию оборудования и пути.

Подсистема Эксплуатации Технического Обслуживания и Администрирования (OMAP). Прикладной Сервисный Элемент (ASE).

OMAP и ASE - области для будущих разработок. Вскоре, OMAP можно будет использовать для проверки маршрутизации к сетевым базам данных и диагностики проблем связи.

ПОДСИСТЕМА ПЕРЕДАЧИ СООБЩЕНИЙ (MTP)

MTP разделяется на три уровня:

MTP. УРОВЕНЬ 1

Самый низкий уровень MTP - уровень 1, эквивалентен физическому уровню МВОС. Уровень 1 определяет физическую, электрическую, и функциональную характеристику цифрового сигнального звена. Физические интерфейсы включают E-1 (2048 Кбит/сек; 32 64 Кбит/сек каналы), DS-1 (1544 Кбит/сек; 24 64 Кбит/сек каналы), V.35 (64 Кбит/сек), DS-0 (64 Кбит/сек), и DS-0A (56 Кбит/сек).

MTP. УРОВЕНЬ 2

Уровень 2 гарантирует точность сквозной передачи через сигнальные звенья. Уровень 2 осуществляет управление потоком, подтверждение правильности последовательности сообщения, и проверку ошибок. Когда в сигнальном звене появляется ошибка, сообщение или комплект сообщений передаются повторно. Уровень 2 эквивалентен канальному уровню МВОС.

Сообщение ОКС №7 названо сигнальной единицей (SU). Есть три типа сигнальных единиц: Заполняющая Сигнальная Единица (FISU), Сигнальная Единица Состояния Звена (LSSU), Значащая Сигнальная Единица (MSU) (рисунок 11).


Рисунок 11. Сигнальные Единицы ОКС №7

FISU передается непрерывно в сигнальные звенья обоих направлений, если другие сигнальные единицы не присутствуют. FISU несет только основную информацию уровня 2 (например, распознавание получения сигнальной единицы удаленным пунктом сигнализации). Поскольку контрольная сумма Контроля Запроса Соединения (CRC) вычисляется для каждой FISU, качество сигнального звена проверяется непрерывно обоими пунктами сигнализации в каждом конце звена. (Примечание: в МСЭ-Т Японии, качество связи проверяется непрерывной передачей байта флага, а не FISU; FISU посылаются только в заранее определенные временные интервалы (например, один раз каждые 150 миллисекунд)).

LSSU несет один или два байта информации о состоянии звена между пунктами сигнализации в каждом конце звена. Состояние звена используется, для управления выравниванием связи и указания состояния пункта сигнализации (например, локальный простой процессора), удаленного пункта сигнализации.

MSU осуществляет управление всеми вызовами, запросом и ответом базы данных, сетевое управление, и управление сетевыми эксплуатационными данными в Поле Сигнальной Информации (SIF). MSU имеет метку маршрутизации, которая позволяет посылать информацию от начального пункта сигнализации к конечному через сеть.

Величина поля "Индикатор Длины" (LI) определяет тип сигнальной единицы:

Значение LI Тип SU
0 FISU
1..2 LSSU
3..63 MSU

6-битовый LI может иметь значения от 0 до 63. Если количество байт, которое следует за LI и предшествует CRC менее чем 63, LI запоминает это число. В противном случае, LI устанавливается на 63. LI 63 указывает, что длина сообщения равняется или больше чем 63 байта (вплоть до максимума 273 байта). Максимальная длина SU - 279 байт: 273 байт (данные) + 1 байт (флаг) + 1 байт (Обратный Порядковый Номер(BSN) + Обратный Бит-Индикатор(BIB)) + 1 байт (Прямой Порядковый Номер(FSN) + Прямой Бит-Индикатор(FIB)) + 1 байт (LI+ 2 бита резерв) + 2 байт (CRC).

Флаг указывает начало новой SU и подразумевает конец предшествующей SU (или любой другой). Двоичная величина флага - 0111 1110. Прежде, чем передавать сигнальную единицу, уровень 2 MTP удаляет "ложные флаги", добавляя нулевой бит после любой последовательности из пяти однобитовых элементов. При получении SU и удалении флага, уровень 2 удаляет любые нулевые биты следующие за последовательностью из пяти однобитовых элементов, чтобы восстановить подлинное содержимое сообщения. Двойные флаги между сигнальными единицами удаляются.

Обратный Порядковый Номер (BSN)

BSN используется, для подтверждения получения SU удаленным пунктом сигнализации. BSN содержит порядковый номер SU .

Обратный Бит-Индикатор (BIB)

BIB указывает обратное подтверждение удаленным пунктом сигнализации в случае переключения.

Прямой Порядковый Номер (FSN)
FSN содержит порядковый номер SU.

Прямой Бит-Индикатор (FIB)

FIB используется при ошибочном восстановлении подобно BIB. Когда SU готова для передачи, пункт сигнализации увеличивает FSN на 1 (FSN = 0..127). Величина контрольной суммы CRC вычисляется и добавляется в начало сообщения. При получении сообщения, удаленный пункт сигнализации проверяет CRC и копирует величину FSN в BSN следующего доступного сообщения, сформированного для передачи обратно в введенный пункт сигнализации.
Если CRC - правильно, передается обратное сообщение.
Если CRC неправильно, удаленный пункт сигнализации указывает обратное подтверждение, переключая BIB до посылки обратного сообщения.
Когда начальный пункт сигнализации получает обратное подтверждение, он передает повторно все предыдущие сообщения, начиная с испорченного с помощью FIB.

Поскольку 7-битовые FSN могут принимать значения от 0 до 127, пункт сигнализации может послать вплоть до 128 сигнальных единиц прежде, чем требовать подтверждения от удаленного пункта сигнализации. BIB указывает последнюю в последовательности SU, получаемую правильно удаленным пунктом сигнализации. BSN подтверждает все прежде полученные SU. Например, если пункт сигнализации получает SU с BSN = 5, сопровождаемую другой с BSN = 10 (и BIB не переключается), последний BSN подразумевает успешное получение SU, как правило, 6 из 9.

Байт Служебной Информации (SIO)

Поле SIO в MSU содержит 4-битовую область подуслуги, сопровождаемую 4-битовым указателем услуги. FISU и LSSU не содержат SIO.

Область подуслуги содержит сетевой указатель (например, национальная или международная) и приоритет сообщения (0..3, 3 - самый верхний приоритет). Приоритет сообщения рассматривается только при условии перегрузки, не управляет порядком, в котором сообщения переданы. Низкоприоритетные сообщения могут отвергаться в течение периодов перегрузки. Приоритет сообщения проверки сигнальных звеньев выше, чем приоритет сообщения установки вызова.

Указатель услуги определяет пользователя MTP, этим самым допуская декодирование информации, содержащейся в SIF.

Указатель услуги Пользователь MTP
3 SCCP
4 TUP
5 ISUP
6 DUP

Поле сигнальной информации (SIF)

SIF в MSU содержит метку маршрутизации и сигнальную информацию (например, SCCP, TCAP, и ISUP). LSSU и FISU не содержат ни метку маршрутизации, ни SIO, так как они посылаются между двумя непосредственно связанными пунктами сигнализации.

Контроль запроса соединения (CRC)
Величина CRC используется, чтобы обнаружить и скорректировать ошибки передачи данных.

MTP. УРОВЕНЬ 3

Уровень 3 обеспечивает маршрутизацию сообщений между пунктами сигнализации в сети ОКС №7 . Уровень 3 эквивалентен сетевому уровню в МВОС.
Уровень 3 распределяет сообщения, основывающиеся на метке маршрутизации в поле сигнальной информации сообщения SU. Метка маршрутизации состоит из кода пункта назначения, кода исходящего пункта, и Поля Селекции Звена Сигнализации (SLS). Коды пунктов - числовые адреса, которые однозначно определяют каждый пункт сигнализации в сети ОКС №7. Когда пункт сигнализации указывает получение кода конечного пункта в сообщении, оно посылается в соответствующую пользовательскую часть (например, ISUP или SCCP), определяемую указателем услуги в SIO. Сообщения, предназначенные для других пунктов сигнализации, передаются при условии, что полученный пункт сигнализации имеет возможность передачи сообщения (подобно STP). Выбор исходящей связи базируется на информации в DPC и SLS.

Метка маршрутизации ANSI содержит 7 байт; метка маршрутизации МСЭ-Т содержит 4 байта (рисунок 12).


Рисунок 12. SIO и SIF ANSI и МСЭ-Т

Коды пунктов ANSI используют 24-бита (три байта); коды пунктов МСЭ-Т обычно используют 14-бит. По этой причине, сигнальная информация передаваемая между ANSI и МСЭ-Т сетями должна проходить через шлюз STP, преобразователь протокола, или другой пункт сигнализации, который имеет как ANSI так и МСЭ-Т коды пунктов.
Примечание: Китай использует 24-битовый МСЭ-Т код пункта, который несовместим как с ANSI так и с другими сетями МСЭ-Т. Взаимодействие между сетями ANSI и МСЭ-Т в дальнейшем усложняются другими реализациями протоколов и процедур высшего уровня.

Код пункта ANSI состоит из сети, кластера и байта члена (например, 245-16-0).
Байт - 8-бит, которые могут содержать любую величину от 0 до 255. Телефонные компании с большими сетями имеют уникальные сетевые идентификаторы, а меньшим операторам назначают уникальный кластерный номер в пределах сетей от 1 до 4 (например, 1-123-9). Сетевой номер 0 не используется; сетевой номер 255 резервируется для будущего использования.

Коды пункта в МСЭ-Т - это двоичные числа, которые могут устанавливаться в зависимости от зоны, области/сети, и идентификационного номера пункта сигнализации.
Например, код пункта 5557 (десятичный) может быть установлен как 2-182-5 (двоичные 010 10110110 101).

Поле Селекции Звена Сигнализации (SLS)

Выбор исходящей связи основывается на информации из DPC и SLS. SLS используется для:

Гарантии упорядочения сообщений. Любые два сообщения, посылаемые с
одинаковым SLS всегда прибудут в место назначения в той же последовательности,
в которой они первоначально были посланы.
допуска равномерного распределения нагрузки трафика среди всех доступных
связей. Теоретически, если пользовательская часть посылает сообщения в равные
интервалы времени и назначает SLS величины циклическим способом, уровень
трафика должен быть равным среди всех связей (в пределах комбинированного
пучка звеньев) в этом расположении.

В сетях ANSI, размер SLS был первоначально 5 бит (32 значения). В конфигурациях с двумя звеньями в каждом пучке звеньев комбинированного пучка звеньев (итог 4 связи), величина SLS 8 присваивается каждой связи, чтобы обеспечить равный баланс трафика.

Проблема возникла при увеличении сетей, снабженных пучками звеньев с 4 связями. С SLS равным 5 бит, конфигурация с 5 звеньями в каждом пучке звеньев комбинированного пучка звеньев приводила к 10 связям. В результате в нечетном значении SLS=3 приходились на 8 связей, а SLS=4 - для остальных 2 связей. Для того, чтобы устранить эту проблему, как ANSI так и Bellcore приспособились к приему 8-битового SLS (256 величин), чтобы обеспечить лучшую загрузку через сигнальные звенья.

В реализациях МСЭ-Т, SLS проинтерпретировано как код сигнального звена в MTP сообщениях. В МСЭ-Т TUP, часть кода идентификации цепи хранится в SLS.

Когда происходит перегрузка, уровень 3 переадресовывает трафик от нарушенных связей, пунктов сигнализации и трафика управления.

Уровни 2 и 1 могут заменяться асинхронным режимом передачи - простым широкополосным протоколом, который использует фиксированную длину ячеек равную 53 байта. Уровень 3 в асинхронном режиме передачи использует уровень адаптации АТМ для сигнализации. Этот интерфейс к настоящему времени находится на стадии разработки.

ПОДСИСТЕМА ПОЛЬЗОВАТЕЛЯ СЕТИ С ИНТЕГРАЦИЕЙ СЛУЖБ (ISUP)

ISUP определяет протокол и процедуры, использованные в установке, управляет и реализует соединительные пути, для Телефонной сети Общего Пользования (ТфОП). ISUP используется как для ISDN так и для вызовов вне ISDN. Вызовы, которые возникают и завершаются таким образом не используют сигнализацию ISUP.

Контроль основного вызова ISUP

Рисунок 13 изображает сигнальную ISUP, связанную с основным вызовом.

1. Когда вызов устанавливается в положение "номер отключен", SSP передает ISUP начальное адресное сообщение (IAM), чтобы зарезервировать свободный соединительный путь, связанный с коммутатором (1a). IAM включает код начального пункта, код пункта назначения, код идентификации цепи (цепь "5" на рисунке 13), набранные цифры и, дополнительно, номер и имя вызывающей стороны. В примере ниже, IAM передается через STP коммутатору (1b). Имейте в виду, что те же сигнальные звенья используются при вызове в том случае, если, при разрыве связи не происходит переключение на альтернативное сигнальное звено.


Рисунок 13. Основная сигнальная ISUP

2. Конечный коммутатор проверяет набранный номер, определяет, что он обслуживает вызываемую сторону, и, что линия доступна для вызова. Конечный коммутатор связывается с линией вызываемой стороны и передает ISUP сообщение полного адреса (ACM) в начальный коммутатор (2a) (через свой STP), чтобы указать, что удаленный конец соединительного пути был зарезервирован. STP направляет полный адрес в начальный коммутатор (2b), который вызывает линию вызываемой стороны и соединяет их в соединительном пути, чтобы установить речевую цепь от вызывающей стороны на данном участке.

В примере, показанном выше, начальные и конечные коммутаторы непосредственно связываются с соединительными путями. Если начальные и конечные коммутаторы непосредственно не связываются с ними, начальный коммутатор передает IAM сигнал для резервирования соединительного пути в промежуточном коммутаторе. Промежуточный коммутатор посылает полный адрес для подтверждения запроса на резерв пути и затем передает начальное адресное сообщение, чтобы зарезервировать соединительный путь в другом коммутаторе. Эти процессы продолжаются до тех пор, пока не будут зарезервированы все соединительные пути, требующиеся для полной передачи речевой цепи от начального коммутатора до конечного.

3. Когда вызываемая сторона поднимает трубку, конечный коммутатор выдает сигнал и передает ISUP сообщение ответа (ANM) в начальный коммутатор через свой STP (3a). STP посылает сообщение ответа в начальный коммутатор (3b), который проверяет, что линия вызывающей стороны подключается к зарезервированному соединительному пути и, если так, вводит биллинг.
4. Если вызывающая сорона опускает трубку первой, начальный коммутатор посылает ISUP сообщение "освободить" соединительный путь между коммутаторами (4a). STP посылает сообщение "освободить" в конечный коммутатор (4b). Если вызываемая сторона отключается первой, или если линия занята, конечный коммутатор посылает сообщение "освободить" в начальный коммутатор, указывая причину (например, нормально или занято).
5. При получении сообщения "освободить", конечный коммутатор отсоединяет речевой тракт от вызываемой стороны, устанавливает состояние соединительного пути в ожидание, и передает ISUP сообщение "освобождение сделано" в начальный коммутатор (5a), чтобы распознать состояние удаленного конца соединительного пути. Когда начальный коммутатор получает (или генерирует) сообщение "освобождение сделано" (5b), он завершает биллинг и устанавливает состояние соединительного пути в ожидание готовности к следующему вызову.

Сообщения ISUP могут также передаваться в течение фазы соединения вызова, то есть, между сообщениями ответа и освобождения.

Формат сообщения ISUP

Информация ISUP находится в Поле Сигнальной Информации (SIF) Значащей Сигнальной Единицы (MSU). SIF содержит метку маршрутизации, сопровождаемую 14-битовым (ANSI) или 12-битовым (МСЭ-Т) кодом идентификации канала (CIC). CIC указывает соединительный путь, резервируемый начальным коммутатором для посылки вызова. CIC сопровождается полем "тип сообщения" (например, IAM, ACM, ANM, "освобождение", "освобождение сделано"), которое определяет содержимое остатка сообщения.


Рисунок 14. Формат Сообщения ISUP

Каждое сообщение ISUP содержит обязательную фиксированную часть, содержащую обязательные параметры фиксированной длины. Иногда обязательная фиксированная часть включает только области типа сообщения.
Обязательная фиксированная часть может следовать за обязательной переменной частью и/или дополнительной частью. Обязательная переменная часть содержит обязательные параметры переменной длины. Дополнительная часть содержит дополнительные параметры, которые опознаются однобайтовым кодом параметра, сопровождаемым полем "указатель длины". Дополнительные параметры могут встречаться в любом порядке. Если дополнительные параметры присутствуют, то их конец указывается байтом, содержащим все нули.

Начальное Адресное Сообщение (IAM)

IAM передается в начале, что необходимо каждому коммутатору для замыкания цепи между вызывающей стороной и вызываемой стороной, пока не произойдет замыкание цепи на конечном коммутаторе. IAM содержит номер вызываемой стороны в обязательной переменной части и может содержать имя и номер вызывающей стороны в дополнительной части.


Рисунок 15. Формат Начальнго Адресного Сообщения в ANSI и МСЭ-Т

Полный Адрес (ACM)

ACM устанавливается в конце, чтобы указать, что удаленный конец соединительного пути зарезервирован. Начальный коммутатор отвечает на сообщение полного адреса, соединяя линию вызывающей стороны в соединительном пути, чтобы завершить речевую цепь от вызывающей стороны к вызываемой стороне. Начальный коммутатор также посылает звуковой сигнал на линию вызываемой стороны.


Рисунок 16. Формат Полного Адреса в ANSI и МСЭ-Т

Сообщение "Ответ" (ANM)

Когда вызываемая сторона отвечает, конечный коммутатор завершает биллинг и посылает сообщение "ответ" (ANM) в начальный коммутатор. Начальный коммутатор вводит биллинг после того, как проверил, что линия вызывающей стороны подключена к зарезервированному соединительному пути.


Рисунок 17. Формат сообщения "ответ" в ANSI и МСЭ-Т

Сообщение "освобождение"(REL)

Сообщение "освобождение" посылается в каждое направление, указывая, что соединительный путь освобождается по определенной причине. Сообщение "освобождение" посылается, когда или вызывающая или вызываемая сторона "отключается" (причина 16). Сообщение "освобождение" посылается также в обратном направлении, если линия вызываемой стороны занята.


Рисунок 18. Формат сообщения "освобождение" в ANSI и МСЭ-Т

Сообщение "освобождение сделано" (RLC)

Сообщение "освобождение сделано" посылается в противоположном направлении сообщению "освобождение", чтобы распознать состояние удаленного конца соединительного пути и закончить соответствующий биллинг.


Рисунок 19. Формат сообщения "освобождение сделано" в ANSI и МСЭ-Т

Подсистема Пользователя Телефонии (TUP)

В некоторых странах мира (например, в Китае), TUP поддерживает основную обработку вызова. TUP используется только в аналоговых цепях; цифровые цепи и возможности передачи данных обеспечиваются DUP (Подсистема Пользователя Данных).

Для обмена информацией между функциональными элементами на интерфейсах A, B, C, D, E, F, G принята система общеканальной сигнализации №7 (ОКС-7 или SS7).

ОКС-7 является специализированной сетью передачи данных с коммутацией пакетов переменной длины (до 274 байтов). Пакеты называют сигнальными единицами.

Узлы сети ОКС-7 принято называть сигнальными пунктами (SP – Signaling Point). Атрибутами сигнального пункта являются:

  • SPC – Signaling Point Code – код сигнального пункта (14 бит)
  • NI – Network Indicator – идентификатор сети (2 бита)

NI=10 – национальная сеть

NI=11 – ведомственная или региональная сеть

NI=00 – международная сеть

Код SPC позволяет адресовать сигнальные сообщения между узлами в пределах одной сети ОКС-7, например в пределах одной национальной сети. Его недостаточно для адресации сообщений между сигнальными пунктами различных сетей ОКС-7.

Три нижних уровня протоколов ОКС-7 образуют часть передачи сообщений (MTP ). Выше расположены пользователи MTP:

ISUP и SCCP . Они подготавливают и передают в MTP сообщения (User Information). MTP дополняет эти сообщения соответствующей служебной информацией. В результате формируется сигнальная единица сообщения (MSU – Message Signaling Unit).

В функции 3-го уровня MTP входит маршрутизация сигнальных единиц. С этой целью к пользовательскому сообщению добавляют метку маршрутизации (Routing Label ) и информационный октет (SIO ). Тем самым указывают коды сигнальных пунктов отправителя (OPC ) и получателя (DPC ) сообщения, пользователя MTP и идентификатор сети (NI ).

Уровень 2 MTP обеспечивает достоверной обмен информацией между двумя сигнальными пунктами. С этой целью в сигнальную единицу включают проверочные биты (CK ). Номера сигнальных единиц, передаваемых в прямом и обратном направлениях (FSN и BSN ) и соответствующие биты-индикаторы (FIB и BIB ) обеспечивают повторную передачу сигнальных единиц при выявлении ошибок на приемной стороне.

Уровень 1 определяет физические, электрические и функциональные характеристики тракта передачи сигнализации и устройств доступа. Для передачи сигнализации используют цифровой канал со скоростью передачи 64 кбит/с. Часто для ОКС-7 выделяют 16-й канал 32-х канального тракта E1, однако это не является обязательным.

Рис. 1.

Структура протоколов ОКС -7

MTP – Message Transfer Part – часть передачи сообщений

ISUP – Integrated Services Digital Network (ISDN) User Part – пользователькая часть сети ISDN

SCCP – Signaling Connection Control Part – часть управления сигнальными соединениями

TCAP – Transaction Capabilities Application Part – прикладная часть возможностей транзакций

BSSAP – Base Station System Application Part – прикладная часть подсистемы базовых станций GSM. Состоит из:

  • DTAP (Direct Transfer Part) - прикладной части обмена сигнализацией между MS и MSC,
  • BSSMAP (BSS Management Application Part) – прикладной части взаимодействия BSC и MSC

RANAP – Radio Access Network Application Part – прикладная часть подсистемы радиодоступа в сетях UMTS

MAP – Mobile Application Part – прикладная часть поддержки мобильности сетей GSM

INAP – Intelligent Network Application Part – прикладная часть интеллектуальных сетей (фиксированная связь)

CAP – CAMEL Application Part – прикладная часть интеллектуальных сетей (подвижная связь)


Рис. 2.

Формат сигнальной единицы сообщений представлен на рис. 3.


Рис. 3.

F – Flag (01111110) – флаг начала и конца сигнальной единицы

BSN – Backward Sequence Number – обратный порядковый номер

BIB – Backward Indicator Bit – обратный бит-индикатор

FSN – Forward Sequence Number – прямой порядковый номер

FIB – Forward Indicator Bit – прямой бит-индикатор

LI – Length indicator – указывает число байт, следующих за LI; идентифицирует тип сигнальной единицы:

0 – Fill-In Signal Unit (FISU) –заполняющая сигнальная единица

1 или 2 – Link Status Signal Unit (LSSU) – сигнальная единица сигнального звена

более 2 – Message Signal Unit (MSU) – сигнальная единица сообщения

SIO – Service information octet – октет информации о сервисе

SI – Service Indicator: ISUP SCCP Link Status

NI – Network Indicator (идентификатор сети): 00; 10; 11.

DPC – destination point code – код пункта назначения

OPC – originating point code – код пункта отправления

SLS – signaling link selection field – поле выбора тракта сигнализации

CK – Check bits – проверочные биты

ISUP реализует функции управления вызовами с возможностью предоставления абонентам услуг ISDN.

Подсистема ISUP использует стандартные сообщения, формат которых определен спецификациями Q.767.

Сообщения, используемые при установлении и окончании вызова:

  • IAM – Initial Address Мessage – начальное адресное сообщение
  • SAM – Subsequent Address Message – последующее адресное сообщени
  • ACM – Address Complete Message – адрес полный
  • ANM – Answer Message – ответ
  • REL – Release Message – освобождение
  • RCM – Release Complete Message – освобождение выполнено

Сообщения ISUP передают по принципу «от звена к звену».

Помимо метки маршрутизации, в поле SIF включаются идентификатор канала (CIC – Circuit Identification Code), однозначно связывающий данное сигнальное сообщение с определенным каналом трафика.


Рис. 4.

Последовательность установления вызова SCCP реализует обмен сигнализацией, несвязанной непосредственно с вызовами и каналами трафика.

В отличие от ISUP SCCP позволяет устанавливать сквозные сигнальные соединения по принципу «из конца в конец».

Формат поля SIF при передаче сообщения SCCP:


Рис. 5.

SCCP обеспечивает передачу сообщений двух типов:

1) Без установления логического соединения (Connection less). Используют MAP, INAP, CAP и др. через TCAP, BSSAP (часть BSSMAP), рис. 6.

2) C установлением логического соединения (Connection oriented). Использует BSSAP (DTAP и часть BSSMAP), RANAP (рис. 7).


Рис. 6.


Рис. 7.

SCCP обеспечивает дополнительные возможности адресации сообщений.

Получателя и отправителя сообщений можно адресовать, используя:

  • номер подсистемы (SSN – Subsystem Number);
  • глобальный заголовок (GT – Global Title).

Номер подсистемы позволяет адресовать сообщения различным сетевым элементам, имеющим одинаковый SPC.

Можно дифференцировать сообщения, адресованные MSC, VLR, HLR, EIR, находящимся в одном узле.

Номера некоторых подсистем:

Глобальный заголовок (GT) используют для адресации SCCP сообщений, направляемых в другие сети ОКС-7.

Например, HLR сети X (NI=10) посылает SCCP сообщение VLR сети Y (NI=10), через транзитную сеть Z (NI=00). Непосредственно адресовать сообщение с использованием только SPC нельзя, так как код сигнального пункта не является уникальным. Однако можно использовать ISDN номер VLR, который и образует GT.

Сигнальную единицу на исходящем узле посредством SPC адресуют не непосредственно в узел-получатель, а в пограничный шлюзовый узел. При этом указывают, что в сообщении содержится информация о GT, например в виде ISDN номера VLR. Шлюзовый узел, принадлежащий двум сетям (NI=10 и NI=00), распаковывает SCCP сообщение, извлекает из него GT, анализирует его и определяет SPC следующего пограничного узла (в своей сети).

В сообщение, отправляемое из одного шлюза в другой, опять вкладывают GT.

Второй шлюз также распаковывает сообщение, извлекает из него GT, и на основании его анализа формирует SCCP сообщение в узел-получатель, используя SPC этого узла. GT в это сообщение уже не вкладывают.


Рис. 8.

DTAP (Direct Transfer Part)


BSSMAP (BSS Management Application Part)





MAP – Mobile Application Part

Служит для обновления данных о местоположении в VLR, HLR, SIM. Инициируется MS в 3-х случаях:

  • при смене локальной зоны,
  • при включении,
  • при истечении таймера периодической локализации.

1. MS инициирует процедуру локализации, посылая сообщение Location_Update_Request (TMSI, LAISIM).

BSS передает в MSC сообщение: BSSAP: LOCATION_UPDATING_Request (TMSI, LAISIM, LAIBCCH).

В новом MSC нет данных, позволяющих преобразовать LAISIM – Адрес старого VLR:

2. MSC запрашивает у MS IMSI: BSSAP: IDENTITY_Request .

3. MS возвращает IMSI в открытом виде:BSSAP: IDENTITY_Response (IMSI).

4. VLR преобразует первые цифры IMSI (MCC+MNC+HLRID) в адрес HLR в сети ОКС-7.

5. VLR запрашивает у HLR аутентификационные триплеты: MAP: SEND_AUTHENTICATION_INFO_Request (IMSI).

6. HLR пересылает запрос в AC, AC генерирует триплеты, возвращает их в HLR, а тот пересылает их в VLR:

MAP: SEND_AUTHENTICATION_INFO_Response (5 триплетов).

В новом MSC есть данные, позволяющих преобразовать LAISIM – Адрес старого VLRN:

7. Новый VLR определяет адрес старого VLR в сети ОКС.

8. Новый VLR делает запрос в старый VLR: MAP: SEND_IDENTIFICATION_Request (TMSI).

9. Старый VLR возвращает IMSI и аутентификационные триплеты: MAP: SEND_IDENTIFICATION_Response (IMSI, триплеты).

10. Проводится аутентификация абонента.

11. VLR информирует HLR о регистрации MS: MAP: UPDATE_LOCATION_Request (IMSI, MSC-ISDN, VLR-ISDN).

12. HLR дает команду старому VLR об удалении абонента из базы данных: MAP: CANCEL_LOCATION_Request (IMSI).

13. Старый VLR удаляет абонента и подтверждает удаление: MAP: CANCEL_LOCATION_Response.

14. HLR принимает решение об обслуживании абонента в новом коммутаторе. При положительном решении информирует новый

VLR об услугах, доступных абоненту: MAP: INSERT_SUBSCRIBER_DATA_Request (MSISDN, данные об основных и

дополнительных услугах абонента, о контролируемых VLR запретах, о подписке CAMEL и т.д.).

15. VLR подтверждает полученную абонентскую информацию: MAP: INSERT_SUBSCRIBER_DATA_Response

16. HLR подтверждает регистрацию абонента: MAP: UPDATE_LOCATION_Response (HLR-ISDN).

17. VLR возвращает MS подтверждение регистрации: BSSAP: LOCATION_UPDATING_ACCEPT (TMSI, LAI).

В результате проведенного обмена сигнальной информацией:

  • В SIM-карте MS записано новое значение LAI и новый TMSI.
  • В новом VLR создана запись об абоненте, включая данные о LA, в которой абонент находится.
  • В старом VLR запись об абоненте ликвидирована.
  • В HLR обновлены данные о местоположении MS – сохранены адреса MSC и VLR.

Исходящий вызов

Рис. 9

Входящий вызов

Доставка вызова в обслуживающий коммутатор:


Рис. 10.

MSRN – Mobile Station Roaming Number

1. В GMSC поступает начальное адресное сообщение: ISUP: IAM (MSISDN-B).

2. GMSC преобразует первые цифры MSISDN-B в адрес HLR-B в сети ОКС-7.

3. GMSC направляет в HLR-B запрос о маршрутизации вызова: MAP: SEND_ROUTING_INFO_Request (MSISDN-B).

4. HLR проверяет: - нахождение абонента в разрешенной сети;

Подписку на услугу;

Отсутствие запретов;

Необходимость переадресации.

5. HLR преобразует VLR-ISDN в адрес VLR в сети ОКС-7.

6. HLR направляет в VLR запрос о предоставлении роумингового номера: MAP: PROVIDE_ROAMING_NUMBER_Request (IMSI).

7. VLR проверяет, подключен ли абонент в данный момент (IMSI Attached/Detached). При положительном результате – ассоциирует

IMSI с одним из MSRN из диапазона номеров (например, присваивает абоненту MSRN 7-495-xyz-3333).

8. VLR возвращает в HLR выделенный роуминговый номер: MAP: PROVIDE_ROAMING_NUMBER_Response (MSRN).

9. HLR пересылает MSRN в GMSC: MAP: SEND_ROUTING_INFO_Response (MSRN).

10.GMSC анализирует первые цифры MSRN и определяет маршрут, формирует и отправляет IAM, в которое включает MSRN. IAM

поступает в MSC: ISUP: IAM (MSRN).

11.MSC ассоциирует поступивший вызов с определенным абонентом (с IMSI) и освобождает MSRN. MSC запрашивает у VLR

значения LAI и TMSI. Преобразует LAI в адрес того BSC, который обслуживает соты данной LA.

12.MSC дает команду BSC послать пейджинговые сообщения по всем сотам локальной области: BSSAP: Paging (TMSI, LAI, IMSI).

BSC организует передачу пейджинга на радиоинтерфейсе Paging Request (TMSI).

Установление входящего вызова (обслуживающий MSC – MS):

Рис. 11.

Подробную информацию об эволюции сетей мобильной связи, текущем состоянии, трендах и перспективах ее развития читайте в новейшей книге-справочнике "Мобильная связь на пути к 6G ".