Общие приемы и правила опиливания. Ручное опиливание поверхностей Инструменты применяемые при опиливании металла

Следующая страница>>

ОПИЛИВАНИЕ МЕТАЛЛОВ

§ 1. Назначение опиливания и инструмент. Напильники.

Формы сечения напильников . Виды насечек. Геометрия зубьев напильника .

Опиливанием называется технологическая операция, осуществляемая напильниками путем срезания (спиливания) слоев металла. Различают ручное и машинное опиливание.

Ручное опиливание осуществляется ручными напильниками. По форме сечения применяются (рис. 67, а-ж) плоские, квадратные, трехгранные, полукруглые, ромбические и ножовочные напильники.



Рис. 67. Формы сечения напильников :

а - плоские, б - квадратные, в - трехгранные, г - полукруглые, д - круглые, е - ромбические, ж - ножовочные

Главным элементом напильника являются насечки, образующие режущие зубья. Различают несколько видов насечки.

Напильники с одинарной насечкой (рис. 68, а) применяют для обработки мягких материалов (латунь, цинк, баббит, свинец, алюминий, медь и др.), обладающих незначительным сопротивлением резанию. Одинарная насечка наносится под углом 70-80° к оси напильника.

Рис. 68. Виды насечек напильников :

а - одинарная, б - двойная, в - рашпильная, г - дуговая

Напильники с двойной насечкой (рис. 68, б) применяют для опиливания стали, чугуна и других твердых металлов с большим сопротивлением резанию. Наилучшими являются напильники с насечками, образующими угол 120-130°.

Напильники с рашпильной насечкой (рис. 68, в) применяются для обработки легких металлов и неметаллов.

Напильники с полукруглыми зубьями (рис. 68, г) имеют неравномерный шаг насечки, отдельные зубья снимают более или менее крупную стружку, благодаря чему напильники работают более равномерно.

Все разновидности напильников, в зависимости от величины зуба, насечки и числа зубьев, приходящихся на 1 см длины, подразделяются на шесть номеров. Основные характеристики напильников в зависимости от номера приведены в табл. 3.

3. Основные характеристики напильников

Любой напильник состоит из следующих частей: носка, ребра, грани и пятки, образующих рабочую часть напильника, и хвостовика (рис. 69).


Рис. 69. Элементы напильника

Зубья напильников имеют определенную геометрию (рис. 70), которая обеспечивает процесс резания.

Рис. 70. Геометрия зубьев напильника

Выбор напильника производится в соответствии с конкретными требованиями условий обработки. Часто при выборе напильников руководствуются следующими соображениями: длина напильника должна быть на 150 мм больше длины обрабатываемой поверхности. Для доводки и опиливания тонких пластин выбирают короткие напильники (100-160 мм), так как насечка у них мельче. Если нужно снять большой припуск, выбирают напильники длиной 300-400 мм, у них насечка крупнее и обработка будет осуществляться значительно интенсивнее.

Небольшие напильники называют надфилями. Надфили применяют для выпиливания отверстий, пазов, выемок и так далее, когда обычный напильник применить нельзя из-за значительных габаритов. В зависимости от числа насечек на 1 см надфили разделены на шесть классов: с 1-го по 6-й. Форма сечения надфилей такая же, как и у напильников.

Опиливанием называется слесарная операция, при которой снимают тонкие слои материала с поверхности заготовки с помощью напильника.

Напильник - это многолезвийный режущий инструмент, обеспечивающий сравнительно высокую точность и малую шероховатость обрабатываемой поверхности заготовки (детали).Материалом для напильников всех видов является углеродистая инструментальная сталь, начиная с марок У7 или У7А и кончая марками У13 или У13А.

Опиливанием придают детали требуемую форму и размеры, пригоняют детали друг к другу при сборке и выполняют другие работы. С помощью напильников обрабатывают плоскости, криволинейные поверхности, пазы, канавки, отверстия различной формы, поверхности, расположенные под разными углами,и т. д.

Для того чтобы удобнее держать напильники при работе, на его хвостовик насаживают деревянную ручку (рукоятку), изготовленную из клена, ясеня, березы, липы или прессованной бумаги; последние лучше, так как не раскалываются.

Припуски на опиливание оставляют небольшие - от 0,5 до 0,025 мм. Погрешность при обработке может быть от 0,2 до 0,05 мм и в отдельных случаях - до 0,005 мм.

Напильник представляет собой стальной брусок определенного профиля и длины, на поверхности которого имеется насечка (нарезка). Насечка образует мелкие и остро-заточенные зубья, имеющие в сечении форму клина. Для напильников с насеченным зубом угол заострения обычно равен 70°, передний угол (у) - до 16°, задний угол (а) - от 32 до 40°.

В зависимости от величины насечек и шага между ними, все напильники делятся на шесть номеров:

Для точных специальных работ применяются напильники с очень мелкой насечкой – надфили. С их помощью выполняют лекальные, граверные, ювелирные работы, зачистку в труднодоступных местах матриц, мелких отверстий, профильных участков изделия и т. п.

Качество опиливания контролируют самыми различными инструментами. Правильность опиливаемой плоскости проверяют поверочной линейкой «на просвет». Если плоская поверхность должна быть опилена особенно точно, ее проверяют с помощью поверочной плиты «на краску». В том случае, если плоскость должна быть опилена под определенным углом к другой смежной плоскости, контроль осуществляется с помощью угольника или угломера. Для проверки параллельности двух плоскостей пользуются штангенциркулем или кронциркулем.

Слесарные угольники

Расстояние между параллельными плоскостями в любом месте должно быть одинаковым.

Контроль криволинейных обрабатываемых поверхностей производят по линиям разметки или с помощью специальных шаблонов.

Напильник - очень хрупкий инструмент и быстро портится, если с ним небрежно обращаются. Одним из основных условий при работе напильником является надлежащий уход за ним. Мельчайшие стружки (опилки), срезаемые зубьями напильника, застревают в углублениях, вследствие чего напильник начинает скользить по обрабатываемой поверхности и перестает снимать стружку, как говорят «не берет». Чтобы восстановить его работоспособность, необходимо удалить все застрявшие частицы металла, т. е. очистить зубья напильника.
Для очистки драчевых напильников с крупной насечкой применяют специально заостренную лопатку из мягкого железа, а для очистки личных и бархатных напильников - жесткие щетки из стальной проволоки. Очистку ведут только в направлении верхней насечки, так как в противном случае происходит затупление зубьев напильника в результате воздействия на них твердой проволочной щетки.


Техника безопасности при опиливании металла:

1.Проверить исправность ручек, насаженных на напильниках; не допускается пользование напильником без ручек, с плохо насаженными или треснувшими и расколотыми ручками. 2. Необходимо правильно насаживать ручку, чтобы избежать ранения ладони хвостовиком напильника.

3. Занимать правильное рабочее положение за тисками при опиливании.

4. Следить за правильной хваткой напильника. Пальцы левой руки должны быть полусогнуты, а не поджаты, иначе при обратном ходе напильника их можно легко поранить об острые края1 опиливаемых изделий.

5. Металлическую стружку и опилки с поверхности изделия или тисков нельзя удалять руками или сдувать ртом. При выдувании опилок ртом можно легко засорить глаза, загрязнить волосы. Опилки и стружки следует сметать волосяной щеткой.

6. При опиливании изделий, особенно из чугуна, рекомендуется прикрывать голову от металлической пыли и опилок; удобно работать, например, в беретах. Девочкам обязательно надевать косынки, так как в длинные волосы легче забивается стружка.

Улучшение условий и повышение производительности труда при опиливании металла достигается путем применения механизированных (электрических и пневматических) напильников.

4.50 /5 (90.00%) проголосовало 6


Опиливание металла. Обработка металла напильником.

Что такое опиливание металла?!

Опиливанием называется обработка поверхности вручную при помощи напильников. Напильником называют инструмент с большим количеством насечек или нарезок, образующих очень мелкие зубья, которые служат для снятия стружки при поступательном движении напильника (рис. 1).

Рис. 1. Напильник:

1 – нос; 2 – грань (широкая и узкая); 3 – ребро; 4 – пятка; 5 – хвост; 6 – ручка.

Названия напильников.

Напильники можно разделить на обычные, надфили, рашпили и машинные напильники. Напильники изготовляются с однорядной и двухрядной насечкой. По величине шага насечки напильники с крупным шагом называют драчевыми, со средним шагом - личными, с небольшим шагом - бархатными.

Формы напильников.

По форме напильники бывают: плоские тупоносые и остроносые с гладким или с насеченным ребром, полукруглые, квадратные трехгранные и круглые (рис. 2).

Рис. 2. Формы напильников:

а – плоский; б – полукруглый; в – квадратный; г – трехгранный; д – круглый; е – надфиль.

В котельном производстве опиловка применяется в редких случаях:

— при небольших поделочных работах;

— для особо тщательной пригонки деталей.

Так как операция опиловки очень дорогая и малопроизводительна.

Хранение напильников.

Напильники следует хранить в инструментальном ящике, разложенными в один ряд, с промежутками между ними, предохранять от попадания на них грязи, масла, воды и особенно наждачной пыли. После работы напильники нужно очищать стальными щетками от грязи и частиц металла.

Как насадить ручку на напильник?!

Напильники имеют деревянные ручки с металлическим кольцом на шейке. Во избежание появления трещины насадку ручки нужно производить осторожно. Хвост напильника постепенно вращательным движением вводится в небольшое отверстие, высверленное в торце шейки ручки. Заостренные кромки хвоста напильника рассверливают отверстие. Одновременно с этим постукивают головкой ручки по верстаку. После некоторого углубления ручку снимают и очищают хвост напильника от древесной стружки. Затем операцию повторяют, пока ручка не сядет плотно до нижних краев напильника. Иногда вместо рассверливания применяют прожигание отверстия в ручке нагретым докрасна тонким стальным стержнем.

Техника опиливания.

Успех и точность опиловки зависят от правильного нажима на напильник и поддержания напильника при работе в положении, параллельном опиливаемой поверхности.

Опиливание происходит скорее, если темп движений незначительный, а сила нажима на напильник большая. При опиливании широких поверхностей работа проходит легче и правильнее, так как сама плоскость является хорошей направляющей.

Жестяницкие работы выполняют в различных отраслях народного хозяйства: машиностроение, строительство, сельское хозяйство и многих других. Книга посвящена таким технологическим процессам изготовления жестяницких изделий, как опиливание и разрезание металла. Здесь подробно рассказано о процессе опиливания металла, видах, размерах напильников и уходе за ними, об опиливании вручную. Кроме того, в книге представлена подробная информация о разрезании металла и его способах.

  • Опиливание металла
Из серии: Жестяницкие работы

* * *

компанией ЛитРес .

Опиливание металла

Опиливанием называется операция обработки металла режущим инструментом – напильником, в результате которой с обрабатываемой детали снимают определенный слой металла и придают ей необходимые размеры, заданную форму и требуемую чистоту поверхности.

Опиливание – очень трудоемкая операция. Это обстоятельство заставляет находить и использовать все имеющиеся возможности для повышения производительности труда при опиливании (правильно выбирать напильники, применять опиловочно-зачистные и другие станки и т.п.).

В жестяницком деле опиливают:

наружные плоские и криволинейные поверхности;

наружные и внутренние углы, а также сложные иди фасонные поверхности;

углубления и отверстия, а также пазы и выступы, пригоняя их друг к другу;

кромки деталей с целью снятия заусенцев.

В зависимости от применения тех или иных напильников точность опиливания заготовок или деталей колеблется от 0.2 до 0.05 мм.

Виды и размеры напильников

Напильники представляют собой режущий инструмент в виде закаленных стальных брусков различного профиля и длины с насеченными на их рабочих поверхностях зубьями.

Каждый такой зуб напильника представляет собой резец, снимающий слой металла в виде стружки.

Напильник состоит из рабочей части и хвостовой – хвостовика. Кроме этого, элементами напильника являются: нос, ребро, грань, пятка. На хвостовую часть напильника насаживают ручку.

Зубья напильников получают несколькими способами:

Насечкой на насекальных станках специальным зубилом, фрезерованием, шлифованием и протягиванием.

Каждому способу соответствует определенная геометрия зубьев напильника.

По назначению напильники разделяются на две группы: слесарные общего назначения, предназначенные для выполнения различных слесарных работ по металлу; Специальные, предназначенные для выполнения различных работ по металлу и неметаллическим материалам.

Специальные напильники подразделяются на ручные и машинные.

Напильники изготовляют с насечкой следующих типов: с простой, или одинарной; с перекрестной; с дуговой.

Каждый тип насечки имеет свои преимущества и применяется для напильников определенного назначения.

Простая или одинарная насечка применяется при изготовлении некоторых видов специальных напильников (например, для заточки пил по дереву).

Напильники с простой насечкой целесообразно применять во всех случаях, когда требуется с узкой обрабатываемой поверхности удалить незначительный слой металла.

Перекрестная, или двойная, насечка применяется при изготовлении напильников общего назначения. В этих напильниках основная насечка выполняется под углом (ламбда)=25º, а вспомогательная – под углом (омега)=45º.

Такие углы наклона насечки обеспечивают высокую производительность.

Точечная, или рашпильная, насечка применяется при изготовлении напильников-рашпилей. Рашпили с точечной насечкой имеют крупные зубья и вместительные канавки, что способствует лучшему отделению стружки при опиливании мягких металлов, резины, кожи, пластмасс и др.

Слесарные напильники различаются по двум основным признакам: по форме поперечного сечения и по числу насечек на один сантиметр длины напильника.

Слесарные напильники изготовляют по форме поперечного сечения восьми типов: плоские (тип А), плоские остроносые (тип Б), квадратные (тип В), трехгранные (тип Г), круглые (тип Д), полукруглые (тип Е), ромбические (тип Ж), ножовочные (тип К).

По числу насечек слесарные напильники делятся на шесть номеров: 0, 1, 2, 3, 4, 5. Номер насечки является показателем эксплуатационного назначения размерного ряда напильников по величине шага основной насечки.

Напильники с насечкой №0 и 1, так называемые драчевые, имеют наиболее крупные зубья и служат для опиливания с точностью 0.2-0.5 мм деталей, имеющих припуск на обработку от 0.5 до 1 мм.

Напильники с насечкой №2, так называемые личные, применяют для чистового опиливания деталей с точностью 0.02-0.15 мм, при этом припуск на обработку составляет от 0.1 до 0.3 мм.

Напильники с насечкой №3, 4, 5, так называемые бархатные, применяют для окончательной отделки деталей с точностью от 0.01 до 0.005 мм, при этом припуск на обработку колеблется от 0.025 до 0.05 мм.

Напильники изготовляют из инструментальной углеродистой стали У13 или У13А и закаливают на твердость не ниже HRC 54-58.

Рашпили отличаются от слесарных напильников насечкой. Зубья у них большие короткие в виде пирамидок. Благодаря большим размерам зубьев и вместительным канавкам позади каждого зуба рашпили пригодны для опиливания мягких металлов. Зубья рашпиля расположены рядами, перпендикулярными его оси.

Чтобы при опиливании не получалось канавок, ряды смещены друг относительно друга на половину шага между зубьями.

В жестяницком деле применяют рашпили общего назначения для опливания деталей из мягких металлов(алюминия, дюралюминия и др.).

Рашпили общего назначения изготовляют четырех типов: плоские тупоносые, плоские остроносые, круглые, и полукруглые. Рашпили всех четырех типов изготовляют длиной 250 и 350 мм.

Для изготовления рашпилей применяют инструментальную углеродистую сталь в основном марок У7А, У10А, закаливаемые до твердости HRC 35-40.

Самые мелкие напильники, так называемые надфили, предназначены для выполнения очень мелкой и точной работы. Они различаются по форме поперечного сечения и по числу насечек на один сантиметр длины напильника.

Надфили изготовляют по форме поперечного сечения одиннадцати типов: плоские тупоносые, плоские остроносые, квадратные, трехгранные односторонние, круглые, полукруглые, овальные, ромбические, ножовочные и пазовые.

По числу насечек надфили делятся на шесть номеров: 1, 2, 3, 4, 5, 6.

Надфили плоские тупоносые, плоские остроносые, квадратные, трехгранные, круглые, полукруглые, ромбические, пазовые изготовляют двух размеров: по длине рабочей части 60 и 80 мм и дине хвостовика соответственно 60 и 80 мм.

Надфили ножовочные изготовляются трех видов: по длине рабочей части 60, 80, 40 мм и длине хвостовика соответственно 60, 80, 40 мм.

Надфили изготовляют из инструментальной углеродистой стали У12 или У12А и закаливают до твердости HRC 54-60.

Напильник имеет деревянную ручку со стяжным кольцом, которое предохраняет ее от трещин при насадивании на хвостовик напильника.

Ручка должна плотно насаживаться на хвостовик напильника, для чего в нем сверлят отверстие диаметром, соответствующим размерам средней части хвостовика, и глубиной, равной длине хвостовика. Затем разогретым докрасна хвостовиком старого напильника такого же размера выжигают отверстие точно по форме хвостовика на 2/3-3/4 его длины.

При надевании ручки на хвостовик нельзя ударять молотком по напильнику, так как возможна поломка его режущей части.

При правильном надевании ручкой ударяют о слесарный верстак до тех пор, пока она не сядет плотно на хвостовик.

Насаживая ручку на хвостовик напильника, следят за тем, чтобы она была засажена без перекоса.

Ручки изготовляют из дерева (береза, бук) или прессованной бумаги.

Деревянные ручки применяются чаще, так как они более практичны. Длина ручки должна быть в полтора раза длиннее хвостовика напильника.

Ручки для напильников общего назначения выпускаются длиной 90, 100, 110, 120, 130, 140 мм, диаметром ее на конце соответственно 12, 16, 20, 23, 25, 28 мм.

Размер ручки выбирается соответственно величине напильника.

Выбор напильников и уход за ними

Напильники выбираются в зависимости от величины припуска, оставляемого на опиливание заданной точности обработки, величины и формы опиливаемой поверхности. Заготовки и детали могут быть обработаны напильником с разной точностью.

При опиливании поверхностей заготовок и деталей драчевыми напильниками достигают точности от 0.2 до 0.5 мм, личными – от 0.02 до 0.15 мм, бархатными – от 0.005 до 0.01 мм.

Припуски на опиливание поверхностей заготовок и деталей выбирают также в зависимости от типа напильника. Припуски на обработку поверхностей заготовок деталей берут при опиливании драчевыми напильниками от 0.5 до 1 мм, личными – от 0.1 до 0.3 мм, бархатными – от 0.025 до 0.05 мм.

Величина слоя металла, снимаемого напильником за один рабочий ход при опиливании драчевыми напильниками колеблется от 0.08 до 0.15 мм, личными – от 0.02 до 0.08 мм, бархатными – от 0.025 до 0.05 мм.

Длина напильника выбирается в соответствии с длиной опиливаемой поверхности. При опиливании слишком длинным напильником трудно правильно балансировать и удерживать его в горизонтальном положении, вследствие этого трудно правильно опиливать поверхность заготовки или детали.

Слишком короткие напильники малопроизводительны, так как у них меньший рабочий ход и при опиливании трудно нажимать на них руками.

Практикой выработаны следующие соотношения между длиной напильника и длиной обрабатываемой поверхности:

Для опиливания заготовок и деталей, изготовляемых из различных материалов, применяют напильники с разной насечкой. Заготовки и детали из чугуна и мягкой стали опиливают драчевыми плоскими и плоскими остроносыми напильниками с насечкой №0 и 1.

При небольшой толщине заготовок и деталей и при опиливании стали повышенной твердости применяют личные напильники с насечкой №2.

Для чистового опиливания стальных и чугунных заготовок и деталей применяют личные напильники с насечкой №2, а при повышенных требованиях к чистоте поверхности – бархатные напильники с насечкой №3 и №4.

Заготовки и детали из меди, латуни и бронзы опиливают напильниками с более острыми зубьями, чем при опиливании заготовок и деталей из стали и чугуна.

В тех случаях, когда требуется опилить одним и тем же напильником латунные и стальные заготовки или детали, в первую очередь опиливаются латунные заготовки или детали, а затем, когда напильник достаточно затупился – заготовки или детали из стали.

Для опиливания заготовок и деталей из алюминия и его сплавов применяют специальные напильники с крупной и глубокой насечкой, обеспечивающей высокую производительность и хорошую чистоту обрабатываемой поверхности.

Заготовки и детали из свинца, баббита и других мягких металлов опиливают личными плоскими остроносыми напильниками с насечкой №2.

Свинец и баббит значительно мягче меди и алюминия, поэтому их опиливают также специальными напильниками с очень острыми зубьями и глубоким впадинами, обеспечивающими высокую производительность и хорошую частоту опиливаемых поверхностей.

Напильники каждого типа предназначены для опиливания поверхностей определенного вида и размеров.

Плоские и плоские остроносые напильники применяют для опиливания плоских и выпуклых поверхностей различных деталей из черных и цветных металлов и сплавов, а также для пропиливания шлицев и канавок.

Конец ознакомительного фрагмента.

* * *

Приведённый ознакомительный фрагмент книги Жестяницкие работы. Опиливание и разрезание металла (Илья Мельников, 2013) предоставлен нашим книжным партнёром -

Опиливанием называется способ резания, при котором осуще­ствляется снятие слоя материала с поверхности заготовки с по­мощью напильника.

Напильник - это многолезвийный режущий инструмент, обес­печивающий сравнительно высокую точность и малую шерохова­тость обрабатываемой поверхности заготовки (детали).

Опиливанием придают детали требуемую форму и размеры, про­изводят пригонку деталей друг к другу при сборке и выполняют другие работы. С помощью напильников обрабатывают плоскости, криволинейные поверхности, пазы, канавки, отверстия различной формы, поверхности, расположенные под разными углами и т. д.

Напильник (рис. 1, а) представляет собой стальной брусок определенного профиля и длины, на поверхности которого имеется насечка

Рис.1 . Напильники:

а - основные части (1- ручка; 2 - хвостовик; 3 - кольцо; 4 - пятка; 5 - грань;

6 - насечка; 7 - ребро; 8 - нос); б - одинарная насечка; в - двойная насечка;

г - рашпильная насечка; д - дуговая насечка; е - насадка ручки; ж - снятие ручки напильника.

Насечка образует мелкие и острозаточенные зубья, имеющие в сечении форму клина. Для напильников с насе­ченным зубом угол заострения β обычно 70°, передний угол γ до 16°, задний угол α от 32 до 40°.

Насечка может быть одинарной (простой), двойной (перекрест­ной), рашпильной (точечной) или дуговой (рис. 1, б - д ).

Напильники с одинарной насечкой снимают широкую стружку, равную длине всей насечки. Их применяют при опиливании мягких металлов.

Напильники с двойной насечкой применяют при опиливании ста­ли, чугуна и других твердых материалов, так как перекрестная насечка размельчает стружку, чем облегчает работу.

Напильниками с рашпильной насечкой, имеющей между зубьями вместительные выемки, что способствует лучшему размещению стружки, обрабатывают очень мягкие металлы и неметаллические материалы.

Напильники с дуговой насечкой имеют большие впадины между зубьями, что обеспечивает высокую производительность и хорошее качество обрабатываемых поверхностей.

Изготовляются напильники из стали У13 или У13 А. После на­сечки зубьев напильники подвергают термической обработке,

Ручки напильников изготовляют обычно из древесины (березы, клена, ясеня и других пород). Приемы насадки ручек показаны на рисунке 1, е и ж.

По назначению напильники делят на следующие группы: общего назначения, специального назначения, надфили, рашпили, машин­ные напильники.

Рис. 2. Формы сечений напильников:

а и б - плоские; в - квадратный; г - трехгранные; д - круглые; е - полукруглый;

ж - ромбический; з - ножовочные.

Улучшение условий и повышение производительности труда при опиливании металла достигаются путем применения механизиро­ванных (электрических и пневматических) напильников.

В условиях учебных мастерских возможно применение механи­зированных ручных опиловочных машинок, которые широко ис­пользуются на производстве.

Универсальная шлифовальная машина (см. рис. 4, г ), работаю­щая от асинхронного электродвигателя 1, имеет шпиндель, к кото­рому крепится гибкий вал 2 с державкой 3 для закрепления рабо­чего инструмента, и сменные прямые и угловые головки, позволяю­щие с помощью круглых фасонных напильников производить опиливание в труднодоступных местах и под разными углами.

Опиливание металла

При опиливании заготовку закрепляют в тисках, при этом опиливаемая поверхность долж­на выступать над уровнем гу­бок тисков на 8-10 мм. Чтобы предохранить заготовку от вмя­тин при зажиме, на губки тисков надевают нагубники из мягкого материала. Рабочая поза при опи­ливании металла аналогична ра­бочей позе при разрезании ме­талла ножовкой.

Правой рукой берут за ручку напильника так, чтобы она упи­ралась в ладонь руки, четыре пальца охватывали ручку снизу, а большой палец помещался сверху (рис. 3, а).

Ладонь левой руки накладывают несколько поперек напильни­ка на расстоянии 20-30 мм от его носка (рис. 3, б).

Перемещают напильник равномерно и плавно на всю длину. Движение напильника вперед является рабочим ходом. Обратный ход - холостой, его выполняют без нажима. При обратном ходе не рекомендуется отрывать напильник от изделия, так как можно потерять опору и нарушить правильное положение инструмента.

Рис. 3. Хватка напильника и балан­сировка им в процессе опиливания:

а - хватка правой рукой; б - хватка ле­вой рукой; в - силы нажима в начале движения;

г - силы нажима в конце движения.

В процессе опиливания необходимо соблюдать координацию усилий нажима на напильник (балансировку). Она заключается в постепенном увеличении во время рабочего хода небольшого вна­чале нажима правой рукой на ручку с одновременным уменьше­нием более сильного вначале нажима левой рукой на носок на­пильника (рис. 3, в, г).

Длина напильника должна превышать размер обрабатываемой поверхности заготовки на 150-200 мм.

Наиболее рациональным темпом опиливания считают 40-60 двойных ходов в минуту.

Опиливание начинают, как правило, с проверки припуска на обработку, который мог бы обеспечить изготовление детали по размерам, указанным на чертеже. Проверив размеры заготовки, определяют базу, т. е. поверхность, от которой следует выдержи­вать размеры детали и взаимное расположение ее поверхностей.

Если степень шероховатости поверхностей на чертеже не ука­зана, то опиливание производят только драчевым напильником. При необходимости получить более ровную поверхность опилива­ние заканчивают личным напильником.

В практике ручной обработки металлов встречаются следую­щие виды опиливания: опиливание плоскостей сопряженных, парал­лельных и перпендикулярных поверхностей деталей; опиливание криволинейных (выпуклых или вогнутых) поверхностей; распиливание и припасовка поверхностей.

В случае опиливания параллельных плоских поверхностей про­верку параллельности производят измерением расстояния между этими поверхностями в нескольких местах, которое должно быть везде одинаковым.

При обработке узких плоскостей на тонких деталях применяют продольное и поперечное опиливание. При опиливании поперек заготовки напильник соприкасается с меньшей поверхностью, по ней проходит больше зубьев, что позволяет снять большой слой металла. Однако при поперечном опиливании поло­жение напильника неустойчивое и легко «завалить» края поверх­ности. Кроме этого, образованию «завалов» может способствовать изгиб тонкой пластинки во время рабочего хода напильника. Про­дольное опиливание создает лучшую опору для напильника и исключает вибрацию плоскости, но снижает производительность обработки.

Для создания лучших условий и повышения производительно­сти труда при опиливании узких плоских поверхностей применяют специальные приспособления: опиловочные призмы, универсаль­ные наметки, наметки-рамки, специальные кондукторы и другие.

Простейшим из них является наметка-рамка (рис. 4, а). Ее применение исключает образование «завалов» обрабатываемой по­верхности. Лицевая сторона наметки-рамки тщательно обработана и закалена до высокой твердости.

Размеченную заготовку вставляют в рамку, слегка прижимая ее винтами к внутренней стенке рамки. Уточняют установку, добиваясь совпадения риски на заготовке с внутренним ребром рам­ки, после чего окончательно закрепляют винты.

Рис. 4. Опиливание поверхностей:

а - опиливание с помощью наметки-рамки; б - прием опиливания выпуклых поверхностей; в - прием опиливания вогнутых поверхностей;г - опиливание с помощью уни­версальной шлифовальной машины (1 - электродвигатель; 2 - гибкий вал; 3 - державка с инструментом).

Затем рамку зажимают в тисках и опиливают узкую поверхность заготовки. Обработку ведут до тех пор, пока напильник не коснет­ся верхней плоскости рамки. Поскольку эта плоскость рамки об­работана с высокой точностью, то и опиливаемая плоскость будет точной и не потребует дополнительной проверки при помощи ли­нейки.

При обработке плоскостей, расположен­ных под углом 90°, сначала опиливают плоскость, прини­маемую за базовую, добиваясь ее плоскостности, затем плоскость, перпендикулярную к базовой. Наружные углы обрабатывают пло­ским напильником. Контроль осуществляют внутренним углом угольника. Угольник прикладывают к базовой плоскости и, при­жимая к ней, перемещают до соприкосновения с проверяемой по­верхностью. Отсутствие просвета указывает, что перпендикуляр­ность поверхностей обеспечена. Если световая щель сужается или расширяется, то угол между поверхностями больше или меньше 90°.

Поверхности, расположенные под углом больше или меньше 90°, обрабатываются аналогичным образом. Наружные углы обрабатываются плоскими напильника­ми, внутренние - ромбическими, трехгранными и другими. Конт­роль обработки ведется угломерами или специальными шабло­нами.

При обработке криволинейных поверх­ностей, кроме обычных приемов опиливания, применяются и специальные.

Выпуклые криволинейные поверхности можно обрабатывать, ис­пользуя прием раскачивания напильника (рис. 4, б ). При пере­мещении напильника сначала его носок касается заготовки, ручка опущена. По мере продвижения напильника носок опускается, а ручка приподнимается. Во время обратного хода движения напиль­ника противоположные.

Вогнутые криволинейные поверхности в зависимости от радиу­са их кривизны обрабатываются круглыми или полукруглыми напильниками. Напильник совершает сложное движение - вперед и в сторону с поворотом вокруг своей оси (рис. 4, в). В процессе обработки криволинейных поверхностей заготовку обычно перио­дически перезажимают с тем, чтобы обрабатываемый участок рас­полагался под напильником.

Распиливанием называется обработка отверстий (пройм) различ­ной формы и размеров при помощи напильников. По применяе­мому инструменту и приемам работы распиливание аналогично опиливанию и является его разновидностью.

Для распиливания применяются напильники различных типов и размеров. Выбор напильников определяется формой и размерами проймы. Проймы с плоскими поверхностями и пазы обрабатывают­ся плоскими напильниками, а при малых размерах - квадратными. Углы в проймах распиливаются трехгранными, ромбическими, но­жовочными и другими напильниками. Проймы криволинейной фор­мы обрабатывают круглыми и полукруглыми напильниками.

Распиливание обычно выполняют в тисках. В крупных дета­лях проймы распиливают на месте установки этих деталей.

Подготовка к распиливанию начинается с разметки проймы. За­тем удаляется излишний металл из ее внутренней полости.

При больших размерах проймы и наибольшей толщине заго­товки металл вырезается ножовкой. Для этого сверлят по углам проймы отверстия, заводят в одно из отверстий ножовочное полот­но, собирают ножовку и, отступя от разметочной линии на величину припуска на распиливание, вырезают внутреннюю полость.

Припасовкой называется взаимная пригонка двух деталей, соп­рягающихся без зазора. Припасовывают как замкнутые, так и по­лузамкнутые контуры. Припасовка характеризуется большой точ­ностью обработки. Из двух припасовываемых деталей отверстие принято называть, как и при распиливании, проймой, а деталь, входящую в пройму, - вкладышем.

Припасовка применяется как окончательная операция при об­работке деталей шарнирных соединений и чаще всего при изготов­лении различных шаблонов. Выполняется припасовка напильни­ками с мелкой или очень мелкой насечкой.

Точность припасовки считается достаточной, если вкладыш входит в пройму без перекоса, качки и просветов.

Возможные виды брака при опиливании металла и их причины:

Неточность размеров опиленной заготовки (снятие очень большого или малого слоя металла) вследствие неточности разметки, непра­вильности измерения или неточности измерительного инструмента;

Неплоскостность поверхности и «завалы» краев заготовки как результат неумения правильно выполнять приемы опиливания;

Вмятины и другие повреждения поверхности заготовки в ре­зультате неправильного ее зажима в тисках.

Дефекты конструкции ВС. К дефектам конструкции ВС можно отнести всеразлиные сколы, микро трещины, коррозионные поражения и т.д. Дефекты обнаруживаются с помощью методов неразрушающего контроля.

Обрабоотка резанием. Обработка, заключающаяся в образовании новых поверхностей отделением поверхностных слоёв материала с образованием стружки . Осуществляется путём снятия стружкирежущим инструментом (резцом, фрезой и пр.)

Обработка склеиванием. Клеевые композиции при ремонте применяются для восстановления деталей с трещинами и пробоинами (блоки цилиндров, картеры агрегатов, корпусы узлов, емкости, фильтры и др.) для склеивания поврежденных деталей взамен клепки при ремонте тормозных для выравнивания поверхности кабин и оперения перед покраской как защитные покрытия длявосстановления размеров и геометрической формы  изношенных деталей, устранения задиров и царапин в трущихся поверхностях для изготовления ремонтных деталей из штампованных заготовок и неметаллических материалов для обеспечения прочности и герметичности неподвижных сопряжений.
Технологические процессы восстановления деталей клеевыми композициямиотличаются простотой выполнения операций и не требуют сложного оборудования. Применение клеев допускает соединение однородных и неоднородных материалов, что осуществить другими способами весьма сложно. При склеивании детали не подвергаются тепловым и силовым нагрузкам, поэтому этим способом можно восстанавливать детали сложной формы и любых размеров.

Обработка сваркой. Сварка в ремонтном производстве находит очень широкое применение. Многие дефекты и повреждения устраняются сваркой, в том чис­ле различные трещины, отколы, пробоины, срыв или износ резьбы и т. п. Сваркой называ­ется процесс соединения металлических частей в одно неразъемное целое при помощи нагре­ва металла в местах соединения. При ремонте автомобильных деталей нагрев металла осу­ществляют газовым пламенем или электриче­ской дугой. Так как детали изготавливаются из различных металлов (сталь, серый и ковкий чугун, цветные металлы и сплавы), то приме­няют соответствующий способ сварки. При горячей сварке деталь медленно на­гревают до температуры 600-650°С в специ­альных печах или горнах. Чем больше содер­жание углерода в чугуне, тем медленнее дол­жна быть скорость нагрева. Предварительный нагрев осуществляют при сварке и заварке трещин в ответственных деталях и деталях сложной конфигурации. После подогрева де­таль помещают в термоизоляционный кожух со специальными задвижками или закрывают листовым асбестом, оставляя открытым толь­ко место сварки.

Обработка пайкой. Пайкой называется процесс получения неразъемного соединения или герметичного соединения при помощи присадочных материалов - припоев.При пайке основной металл детали не плавится. Надежность соединения обеспечивается за счет диффузии припоя в металл и зависит от правильного подбора флюса и припоя, тщательности очистки поверхности и наличия минимального зазора в стыке соединенных деталей. В зависимости от температуры плавления припои делятся на мягкие и твердые: мягкие припоиимеют температуру плавления до 300 °С, а твердые – 800 °С и выше.

Бортовой аварийный регистратор - это устройство, используемое в авиации для записи основных параметров полёта, показателей систем самолёта, переговоров экипажа и т. д. для выяснения причин лётных происшествий. Бортовой самописец собирает такие данные как:

o параметры техники: давление топлива, давление в гидросистемах, обороты двигателей, температура и т. д.;

o действия экипажа: степень отклонения органов управления, уборка и выпуск взлётно-посадочной механизации, нажатия на кнопки;

o навигационные данные: скорость и высота полёта, курс, прохождение приводных маяков и прочее.

Запись информации производится либо на магнитные носители (металлическая проволока или магнитная лента), либо - в современных регистраторах - на твердотельные накопители (флэш-память). Затем эту информацию можно считать и расшифровать в виде последовательных записей с указанием их времени.

Контрольно-измерительная и проверочная аппаратура. К инструментам и приборам для точных измерений относятся штангенциркули одно– или двухсторонние, эталонные и угловые плитки, микрометры для наружных измерений, нутромеры микрометрические, глубиномеры микрометрические, индикаторы, профилометры, проекторы, измерительные микроскопы, измерительные машины, а также разного вида пневматические и электрические приборы и вспомогательные устройства.

Измерительные индикаторы предназначены для сравнительных измерений путем определения отклонений от заданного размера. В сочетании с соответствующими приспособлениями индикаторы могут применяться для непосредственных измерений.

Измерительные индикаторы, являющиеся механическими стрелочными приборами, широко применяются для измерения диаметров, длин, для проверки геометрической формы, соосности, овальности, прямолинейности, плоскостности и т. д. Кроме того, индикаторы часто используются как составная часть приборов и приспособлений для автоматического контроля и сортировки. Цена деления шкалы индикатора обычно 0,01 мм, в ряде случаев – 0,002 мм. Разновидностью измерительных индикаторов являются миниметры и микрокаторы.

Измерительные приспособления предназначены для измерения изделий больших размеров.

Измерительные проекторы – это приборы, относящиеся к группе оптических, основанные на использовании метода бесконтактных измерений, т. е. измерений размеров не самого предмета, а его изображения, воспроизведенного на экране в многократном увеличении.

Измерительные микроскопы, как и проекторы, относятся к группе оптических приборов, в которых используется бесконтактный метод измерений. Они отличаются от проекторов тем, что наблюдение и измерение выполняются не на изображении предмета, спроектированном на экране, а на увеличенном изображении предмета, наблюдаемом в окуляре микроскопа. Измерительный микроскоп служит для измерения длин, углов и профилей разнообразных изделий (резьб, зубьев, шестерен и т. д.).

Обслуживание топливных фильтров. Основными работами технического обслуживания системы питания топливом являются: промывка фильтров грубой очистки; смена фильтрующих элементов тонкой очистки; проверка работоспособности топливоподкачивающего насоса; проверка и регулировка топливного насоса высокого давления на начало, величину и равномерность подачи топлива в цилиндры двигателя; установка угла опережения впрыска топлива; проверка и регулировка форсунок. Причем проверка топливоподкачивающего насоса и загрязненности топливных фильтрующих элементов должна быть систематической и проводиться инструментальными методами (например, приспособлением КИ-13943 ГосНИТИ).

Уход за топливными фильтрами заключается в промывке фильтра грубой очистки и смене фильтрующих элементов в фильтрах тонкой очистки.

Для промывки фильтра грубой очистки необходимо слить из него топливо и произвести его разборку. Сетка фильтрующего элемента и внутренняя полость стакана промываются бензином или дизельным топливом и продуваются сжатым воздухом.

Перед заменой старых фильтрующих элементов на новые топливо из фильтров тонкой очистки сливается и его стаканы промываются бензином или дизельным топливом и продуваются сжатым воздухом.

После сборки фильтров грубой и тонкой очистки необходимо убедиться в отсутствии подсоса воздуха через фильтры при работающем двигателе. Подсос воздуха и подтекание топлива устраняются подтягиванием болтов крепления стаканов к корпусам.

Фильтр тонкой очистки промывают на ультразвуковой установке в водном растворе или креолине. Качество промывки фильтров на ультразвуковой установке проверяется с помощью прибора ПКФ (рис.1.)

Рисунок 1.

Рис.1. Контроль качества промывки фильтров прибором ПКФ:
1 - сигнальная кнопка; 2- ручка; 3, 8, 10 - уплотнительные кольца; 4 - корпус; 5 - поплавок; 6- переходник; 7 - фланец; 9 - проверяемый фильтр; 11 - заглушка; 12 - секундомер). Для этого на прибор устанавливают переходник, соответствующий проверяемому фильтру, и фильтр с одной заглушкой устанавливают на переходник. В емкость заливают масло АМГ-10, подогретое до температуры 18-23 °С так, чтобы уровень масла был на 50...60 мм выше верхнего края проверяемого фильтра. Фильтр опускают на короткое время в масло АМГ-10, после чего дают возможность стечь маслу. Подготовляют секундомер, заглушают отверстие на рукоятке прибора, и прибор с фильтром опускают в емкость с маслом АМГ-10. Открывают отверстие на рукоятке прибора и включают секундомер. В момент совпадения сигнальной кнопки с уровнем верхнего торца рукоятки прибора секундомер выключают и определяют время заполнения фильтра маслом, которое должно быть не более 5 с. Если это время окажется более 5 с, то фильтр промывают повторно на ультразвуковой установке или его заменяют.

Проверка на герметичность. Проверка производится следующим образом: вначале необходимо включить компрессор и наблюдать за повышением давления в кабине по ртутному манометру. Скорость нарастания давления должна быть не более 0,3-0,4 мм рт. ст. При достижении в кабине избыточного напора 0,1 кгс/см2 необходимо произвести внешний осмотр фюзеляжа и выявить места утечки воздуха, поддерживая это давление. Затем медленно (не более 0,3- 0,4 мм рт. ст.) довести избыточный набор,в кабине до 0,3 кгс/см2, после чего выключить подачу воздуха от компрессора; замерить время падения.избыточного давления с 0,3 до 0,1 кгс/см2. Фюзеляж считается герметичным, если время падения избыточного напора с 0,3 до 0,1 кгс/см2 не менее 10 мин. При проверке герметичности (при повышении и снижении давления) следует осмотреть места возможной утечки. В случае если время падения давления менее 10 мин, необходимо обязательно проверить контуры люков, входной двери, остекление кабин, места стыковки обшивки герметического отсека (по всему фюзеляжу) и отсек носового колеса. Дополнительными местами утечки могут быть гермовыводы электрожгутов, труб, ШДГ и антенн. Устранение выявленных дефектов следует производить после стравливания.избыточного давления до нуля. Места с явными утечкам, и воздуха подлежат обязательной заделке, даже если время падения давления укладывается,в норму.

Турбовинтово́й дви́гатель - тип газотурбинного двигателя, в котором основная часть энергии горячих газов используется для привода воздушного винта через понижающий частоту вращения редуктор, и лишь небольшая часть энергии составляет выхлоп реактивной тяги. Наличие понижающего редуктора обусловлено необходимостью преобразования мощности: турбина - высокооборотный агрегат с малым крутящим моментом, в то время как для вала воздушного винта требуются относительно малые обороты, но большой крутящий момент.

Существуют две основные разновидности турбовинтовых двигателей: двухвальные, или со свободной турбиной (наиболее распространенные в настоящее время), и одновальные. В первом случае между газовой турбиной (называемой в этих двигателях газогенератором) и трансмиссией не существует механической связи, и привод осуществляется газодинамическим способом. Воздушный винт не находится на общем валу с турбиной и компрессором. Турбин в таком двигателе две: одна приводит компрессор, другая (через понижающий редуктор) - винт. Такая конструкция имеет ряд премуществ, в том числе и возможность работы силового агрегата самолёта на земле без передачи на воздушный винт (в этом случае используется тормоз воздушного винта, а работающий газотурбинный агрегат обеспечивает самолёт электрической мощностью и воздухом высокого давления для бортовых систем).

В связи с уменьшением эффективности воздушного винта при увеличении скорости полёта, турбовинтовые двигатели в основном распространены на относительно малоскоростных летательных аппаратах, таких как самолёты местных авиалиний и транспортные самолёты. Вместе с тем, турбовинтовые двигатели на малых скоростях полёта гораздо экономичнее, чем турбореактивные двигатели.

ПМД-70

Назначение.

Порошковый дефектоскоп ПМД-70 представляет собой универсальное многофункциональное устройство, осуществляющее магнитопорошковый и магнитолюминисцентный методы неразрущающего контроля металлических изделий и сварных соединений. Прибор предназначен для выявления различных дефектов как на поверхности детали, так и в верхнем слое ферромагнитного материала.

ПМД-70 применяется для проведения дефектоскопических исследований на производствах, изготавливающих, обслуживающих и эксплуатирующих металлические конструкции и изделия, соединенные между собой сварочными операциями. Дефектоскоп эффективен и в полевых условиях, при работе на открытом воздухе и при испытаниях в лабораториях.

Принцип действия.

Порошковый дефектоскоп имеет несколько разновидностей, отличающихся видом намагничивающих устройств: электромагниты, кабели, контактные группы, и их питанием: от сети переменного или постоянного тока. С помощью этих устройств и импульсного блока прибор наводит электромагнитное поле в контролируемом объекте, которое намагничивают отдельные участки изделия продольным или циркулярным полем. Далее на изделие наносится магнитная суспензия или порошок, который является своего родом индикатором намагниченности. По измеренной величине магнитной индукции определяется наличие и глубина повреждения. С помощью нанесения данного индикатора составляется визуальная картина дефекта. Размагничивание материала изделия происходит при помощи триггеров, работающих в динамическом режиме, и осуществляющих реверсивное течение тока через намагничивающие устройства.

Вывод

В результате прохождения слесарно-механической практики я:

Ознакомился с техникой безопасности, охраной труда при работе с инструментами, оборудование и приспособлениями для выполнения слесарно-механических работ;

Приобрел навыки практической работы в качестве исполнителя ведения слесарно-механической работы;

Закрепил теоретические знания,полученные при изучении специальных дисциплин;

Ознакомился со слесарно-механическими оборудованиями, инструментами и научился пользововаться ими;

Ознакомился с приборами и методами обнаружения дефектов.

Хотелось бы подробно рассмотреть, изучить детали ВС и поучаствовать в техническом обслуживании. Надеюсь заполнить эти пробелы в следующей производственной практике.

Цеулёв Н.Е.

Министерство образования и науки Республики Казахстан

АО «Академия Гражданской Авиации»

Авиационный факультет

Кафедра №10 «Авиационная техника и летная эксплаутация»