От чего образуется большая озоновая дыра. Озоновые дыры — «дети» стратосферных вихрей

Возникновения озоновых дыр в полярных регионах происходит по причине воздействия целого ряда факторов. Концентрация озона снижается в результате воздействия веществ природного и антропогенного происхождения, а также из-за недостатка солнечного излучения на протяжении полярной зимы. Основным антропогенным фактором, вызывающим возникновения озоновых дыр в полярных регионах происходит по причине воздействия целого ряда факторов. Концентрация озона снижается в результате воздействия веществ природного и антропогенного происхождения, а также из-за недостатка солнечного излучения на протяжении полярной зимы. Основным антропогенным фактором, вызывающим уменьшение концентрации озона, считается выделение хлор- и бромсодержащих фреонов. Кроме того, чрезвычайно низкие температуры в полярных областях становятся причиной образования так называемых полярных стратосферных облаков, которые в сочетании с полярными вихрями выступают катализаторами в реакции распада озона, то есть попросту убивают озон.

Источники разрушения

Среди разрушителей озонного слоя можно выделить:

1) Фреоны.

Озон разрушается под воздействием соединений хлора, известных как фреоны, которые, также разрушаясь под воздействием солнечной радиации, освобождают хлор, «отрывающий» от молекул озона «третий» атом. Хлор в соединения не образовывает, но служит катализатором «разрыва». Таким образом, один атом хлора способен «погубить» много озона. Считается, что соединения хлора способны оставаться в атмосфере от 50 до 1500 лет (в зависимости от состава вещества) Земли. Наблюдения за озоновым слоем планеты проводились антарктическими экспедициями с середины 50-х.

Озоновая дыра над Антарктидой, увеличивающаяся по весне и уменьшающаяся к осени, была обнаружена в 1985 году. Открытие метеорологов вызвало цепь последствий экономического характера. Дело в том, что в существовании «дыры» была обвинена химическая промышленность, производящая вещества, содержащие фреоны, способствующие разрушению озона (от дезодорантов до холодильных установок). В вопросе о том насколько человек повинен в образовании «озоновых дыр» - единого мнения нет. С одной стороны - да, безусловно, повинен. Производство соединений, приводящих к разрушению озона, следует свести к минимуму, а лучше и вообще прекратить. То есть отказаться от целого сектора промышленности, с оборотом во многие миллиарды долларов. А если не отказаться - то перевести ее на «безопасные» рельсы, что тоже стоит денег.

Точка зрения скептиков: человеческое влияние на атмосферные процессы, при всей его разрушительности в локальном плане, в планетарном масштабе - ничтожно. Антифреоновая кампания «зеленых» имеет вполне прозрачную экономическую и политическую подоплеку: с ее помощью крупные американские корпорации (Дюпон, например), душат своих зарубежных конкурентов, навязывая соглашения по "охране окружающей среды" на государственном уровне и насильно вводя новый технологический виток, который более слабые в экономическом отношении государства выдержать не в состоянии.

2)Высотные самолёты

Разрушению озонного слоя способствуют не только фреоны, выделяющиеся в атмосферу и попадающие в стратосферу. К разрушению озонного слоя причастны и окислы азота, которые образуются при ядерных взрывах. Но окислы азота образуются и в камерах сгорания турбореактивных двигателей высотных самолётов. Окислы азота образуются из азота и кислорода, которые там находятся. Скорость образования окислов азота тем больше, чем выше температура, т. е. чем больше мощность двигателя. Важна не только мощность двигателя самолёта, но и высота, на которой он летает и выпускает разрушающие озон окислы азота. Чем выше образуется окись или закись азота, тем он губительнее для озона. Общее количество окиси азота, которое выбрасывается в атмосферу в год, оценивается в 1 млрд. т. Примерно треть этого количества выбрасывается самолётами выше среднего уровня тропопаузы (11 км). Что касается самолётов, то наиболее вредными являются выбросы военных самолётов, количество которых исчисляется десятками тысяч. Они летают преимущественно на высотах озонного слоя.

3) Минеральные удобрения

Озон в стратосфере может уменьшаться и за счет того, что в стратосферу попадает закись азота N 2 O, которая образуется при денитрификации связанного почвенными бактериями азота. Такую же денитрификацию связанного азота производят и микроорганизмы в верхнем слое океанов и морей. Процесс денитрификации напрямую связан с количеством связанного азота в почве. Таким образом, можно быть уверенным в том, что с ростом количества вносимых в почву минеральных удобрений будет в такой же мере увеличиваться и количество образованной закиси азота N 2 O. Далее, из закиси азота образуются окислы азота, которые и приводят к разрушению стратосферного озона.

4) Ядерные взрывы

При ядерных взрывах выделяется очень много энергии в виде тепла. Температура, равная 6000 0 С устанавливается уже через несколько секунд после ядерного взрыва. Это энергия огненного шара. В сильно нагретой атмосфере происходят такие преобразования химических веществ, какие при нормальных или не происходят, или протекают очень медленно. Что касается озона, его исчезновения, то наиболее опасными для него являются образующиеся при этих преобразованиях окислы азота. Так, за период с 1952 по 1971 г. в результате ядерных взрывов в атмосфере образовалось около 3 млн. т. окислов азота. Дальнейшая судьба их такова: они в результате перемешивания атмосферы попадают на разные высоты, в том числе и в атмосферу. Там они вступают в химические реакции с участием озона, приводя к его разрушению.

5) Сжигание топлива.

Закись азота обнаруживается и в дымовых газах электростанций. Собственно, о том, что окись и двуокись азота присутствуют в продуктах сгорания, было известно давно. Но эти высшие окислы не влияют на озон. Они, конечно, загрязняют атмосферу, способствуют образованию в ней смога, но довольно быстро удаляются из тропосферы. Закись же азота, как уже говорилось, опасна для озона. При низких температурах она образуется в таких реакциях:

N 2 + O + M = N 2 O + M,

2NH 3 + 2O 2 =N 2 O = 3H 2 .

Масштаб этого явления очень значителен. Таким путём в атмосфере ежегодно образуется примерно 3 млн. т. закиси азота! Эта цифра говорит о том, что это источник разрушения озона.

Вывод: Источниками разрушения являются: фреоны, высотные самолёты, минеральные удобрения, ядерные взрывы, сжигание топлива.

Эти и другие недавно полученные научные данные укрепили вывод предыдущих оценок в том, что совокупность научных доказательств свидетельствует о том, что наблюдаемая потеря озона в средних и высоких широтах в основном обусловлена антропогенными хлор- и бромсодержащими соединениями

Оригинальный текст (англ.)

These and other recent scientific findings strengthen the conclusion of the previous assessment that the weight of scientific evidence suggests that the observed middle- and high-latitude ozone losses are largely due to anthropogenic chlorine and bromine compounds

Согласно другой гипотезе, процесс образования «озоновых дыр» может быть в значительной мере естественным и не связан исключительно с вредным воздействием человеческой цивилизации .

Для определения границ озоновой дыры выбран минимальный уровень содержания озона в атмосфере в 220 единиц Добсона .

Площадь озоновой дыры над Антарктикой составляла в 2018 году в среднем 22,8 млн квадратных километров (в 2010-2017 годах среднегодовые величины колебались от 17,4 до 25,6 млн квадратных километров, в 2000-2009 годах - от 12,0 до 26,6 млн квадратных километров, в 1990-1999 годах - от 18,8 до 25,9 млн квадратных километров).

История [ | ]

Озоновая дыра диаметром свыше 1000 км впервые была обнаружена в 1985 году на Южном полушарии , над Антарктидой , группой британских учёных: (англ. ) , (англ. ) , (англ. ) , опубликовавших соответствующую статью в журнале Nature . Каждый август она появлялась, а в декабре - январе прекращала своё существование. Над Северным полушарием в Арктике осенью и зимой существуют многочисленные озоновые мини-дыры. Площадь такой дыры не превышает 2 млн км², время её жизни - до 7 суток .

Механизм образования [ | ]

В результате отсутствия солнечного излучения, во время полярных ночей озон не образуется. Нет ультрафиолета - нет озона. Имея большую массу, молекулы озона опускаются к поверхности Земли и разрушаются, так как неустойчивы при нормальном давлении.

Роуланд и Молина предположили, что атомы хлора могут вызвать разрушение больших количеств озона в стратосфере. Их выводы были основаны на аналогичной работе Пауля Джозефа Крутцена и Харольда Джонстоуна, которые показали, что оксид азота (II) (NO) может ускорять разрушение озона.

К уменьшению концентрации озона в атмосфере ведёт совокупность факторов, главными из которых является гибель молекул озона в реакциях с различными веществами антропогенного и природного происхождения, отсутствие солнечного излучения в течение полярной зимы, особо устойчивый полярный вихрь , который препятствует проникновению озона из приполярных широт, и образование полярных стратосферных облаков (ПСО), поверхность частиц которого катализируют реакции распада озона. Эти факторы особенно характерны для Антарктики, в Арктике полярный вихрь намного слабее ввиду отсутствия континентальной поверхности, температура выше на несколько градусов, чем в Антарктике, а ПСО менее распространены, к тому же имеют тенденцию к распаду в начале осени. Будучи химически активными, молекулы озона могут реагировать со многими неорганическими и органическими соединениями. Главными веществами, вносящими вклад в разрушение молекул озона, являются простые вещества (водород , атомы кислорода , хлора , брома), неорганические (хлороводород , монооксид азота) и органические соединения (метан , фторхлор- и фторбромфреоны, которые выделяют атомы хлора и брома). В отличие, например от гидрофторфреонов, которые распадаются до атомов фтора , которые, в свою очередь, быстро реагируют с водой , образуя стабильный фтороводород . Таким образом, фтор не участвует в реакциях распада озона. Йод также не разрушает стратосферный озон , так как иодсодержащие органические вещества почти полностью расходуются ещё в тропосфере. Основные реакции, вносящие вклад в разрушение озона, приведены в статье про озоновый слой .

Последствия [ | ]

Ослабление озонового слоя усиливает поток ультрафиолетовой солнечной радиации, проникающей в океанские воды, что ведет к увеличению смертности среди морских животных и растений .

Восстановление озонового слоя [ | ]

Хотя человечеством были приняты меры по ограничению выбросов хлор- и бромсодержащих фреонов путём перехода на другие вещества, например фторсодержащие фреоны, процесс восстановления озонового слоя займёт несколько десятилетий. Прежде всего, это обусловлено огромным объёмом уже накопленных в атмосфере фреонов, которые имеют время жизни десятки и даже сотни лет. Поэтому затягивания озоновой дыры не стоит ожидать ранее 2048 года. По данным профессора Сьюзан Соломон, с 2000 по 2015 озоновая дыра над Антарктидой уменьшилась примерно на площадь Индии. По данным НАСА , в 2000 году среднегодовая площадь озоновой дыры над Антарктидой составила 24,8 млн квадратных километров, в 2015 году - 25,6 млн квадратных километров .

Заблуждения об озоновой дыре [ | ]

Существует несколько широко распространённых мифов касательно образования озоновых дыр. Несмотря на свою ненаучность, они часто появляются в СМИ [ ] - иногда по неосведомлённости, иногда поддерживаемые сторонниками теорий заговоров . Ниже перечислены некоторые из них.

Озоновая дыра над Антарктидой существует уже давно [ | ]

Систематические научные наблюдения за озоновым слоем Антарктиды ведутся с 20-х годов XX века, но только во второй половине 70-х было обнаружено образование «устойчивой» Антарктической озоновой дыры, причем быстрые темпы её развития (увеличение размеров и снижение средней концентрации озона в границах дыры) в 80-е и 90-е годы вызвали панические опасения того, что точка невозврата в степени разрушающего антропогенного воздействия на озоновый слой уже пройдена.

Основными разрушителями озона являются фреоны [ | ]

Это утверждение справедливо для средних и высоких широт. В остальных хлорный цикл ответственен только за 15-25 % потерь озона в стратосфере. При этом необходимо отметить, что 80 % хлора имеет антропогенное происхождение (подробнее про вклад различных циклов см. ст. озоновый слой). То есть вмешательство человека сильно увеличивает вклад хлорного цикла. И при имевшейся тенденции к увеличению производства фреонов до вступления в действие Монреальского протокола (10 % в год) от 30 до 50 % общих потерь озона в 2050 году обуславливалось бы воздействием фреонов. До вмешательства человека процессы образования озона и его разрушения находились в равновесии. Но фреоны, выбрасываемые при человеческой деятельности, сместили это равновесие в сторону уменьшения концентрации озона. Что же касается полярных озоновых дыр, то здесь ситуация совершенно иная. Механизм разрушения озона в принципе отличается от более высоких широт, ключевой стадией является превращение неактивных форм галогенсодержащих веществ в оксиды, которая протекает на поверхности частиц полярных стратосферных облаков. И в результате практически весь озон разрушается в реакциях с галогенами, за 40-50 % ответственен хлор и порядка 20-40 % - бром.

Позиция компании DuPont [ | ]

Компания DuPont после обнародования данных об участии фреонов в разрушении стратосферного озона восприняла эту теорию в штыки и потратила миллионы долларов на кампанию в прессе по защите фреонов. Председатель DuPont писал в статье в журнале Chemical Week от 16 июля 1975 года, что теория разрушения озона - это научная фантастика, вздор, не имеющий смысла . Кроме DuPont целый ряд компаний во всём мире производил и производит различные типы фреонов без отчисления лицензионных платежей .

Фреоны слишком тяжелы, чтобы достигать стратосферы [ | ]

Иногда утверждается, что так как молекулы фреонов намного тяжелее азота и кислорода, то они не могут достигнуть стратосферы в значительных количествах. Однако атмосферные газы перемешиваются полностью, а не стратифицируются или сортируются по весу. Оценки требуемого времени для диффузионного расслоения газов в атмосфере требуют времён порядка тысяч лет. Конечно, в динамической атмосфере это невозможно. Процессы вертикального массопереноса, конвекции и турбулентности полностью перемешивают атмосферу ниже турбопаузы намного быстрее. Поэтому даже такие тяжёлые газы, как инертные или фреоны , равномерно распределяются в атмосфере, достигая в том числе и стратосферы . Экспериментальные измерения их концентраций в атмосфере подтверждают это, см. например справа график распределения фреона CFC-11 по высоте. Также измерения показывают, что требуется порядка пяти лет для того чтобы газы, выделившиеся на поверхности Земли, достигли стратосферы, см. второй график справа. Если бы газы в атмосфере не перемешивались, то такие тяжёлые газы из её состава, как аргон и углекислый газ , образовывали бы на поверхности Земли слой в несколько десятков метров толщиной, что сделало бы поверхность Земли необитаемой. Но это не так. И криптон с атомарной массой 84, и гелий с атомарной массой 4, имеют одну и ту же относительную концентрацию, что около поверхности, что до 100 км высоты. Конечно, всё вышесказанное справедливо только для газов, которые относительно стабильны, как фреоны или инертные газы. Вещества, которые вступают в реакции, а также подвергаются различным физическим воздействиям, скажем, растворяются в воде, имеют зависимость концентрации от высоты.

Основные источники галогенов природные, а не антропогенные [ | ]

Источники хлора в стратосфере

Есть мнение, что природные источники галогенов , например вулканы или океаны , более значимы для процесса разрушения озона, чем произведённые человеком. Не подвергая сомнению вклад природных источников в общий баланс галогенов, необходимо отметить, что в основном они не достигают стратосферы ввиду того, что являются водорастворимыми (в основном хлорид-ионы и хлороводород) и вымываются из атмосферы, выпадая в виде дождей на землю. Также природные соединения менее устойчивы, чем фреоны, например метилхлорид имеет атмосферное время жизни всего порядка года, по сравнению с десятками и сотнями лет для фреонов. Поэтому их вклад в разрушении стратосферного озона довольно мал. Даже редкое по своей силе извержение вулкана Пинатубо в июне 1991 года вызвало падение уровня озона не за счёт высвобождаемых галогенов, а за счёт образования большой массы сернокислых аэрозолей, поверхность которых катализировала реакции разрушения озона. К счастью, уже через три года практически вся масса вулканических аэрозолей была удалена из атмосферы. Таким образом, извержения вулканов являются сравнительно краткосрочными факторами воздействия на озоновый слой, в отличие от фреонов, которые имеют времена жизни в десятки и сотни лет.

Озоновая дыра должна находиться над источниками фреонов [ | ]

Динамика изменения размера озоновой дыры и концентрации озона в Антарктике по годам

Многие не понимают, почему озоновая дыра образуется в Антарктике, когда основные выбросы фреонов происходят в Северном полушарии. Дело в том, что фреоны хорошо перемешаны в тропосфере и стратосфере . Ввиду малой реакционной способности они практически не расходуются в нижних слоях атмосферы и имеют срок жизни в несколько лет или даже десятилетий. Будучи очень летучими молекулярными соединениями, они сравнительно легко достигают верхних слоёв атмосферы.

Сама Антарктическая «озоновая дыра» существует не круглогодично. Она появляется в конце зимы - начале весны (август-сентябрь) и проявляется в заметном снижении средней концентрации озона внутри обширной географической области. Причины, по которой озоновая дыра образуется в Антарктике, связаны с особенностями местного климата. Низкие температуры антарктической зимы приводят к образованию полярного вихря. Воздух внутри этого вихря движется в основном по замкнутым траекториям вокруг Южного полюса и слабо перемешивается с воздухом других широт. В это время полярная область не освещается Солнцем, и в отсутствие ультрафиолетового облучения озон не образуется, а, накопленный до этого, разрушается (как в результате взаимодействий с другими веществами и частицами, так и самопроизвольно, поскольку молекулы озона нестабильны). С приходом полярного дня количество озона постепенно увеличивается и снова выходит к нормальному уровню. То есть колебания концентрации озона над Антарктикой - сезонные.

Но если проследить усреднённую в течение каждого года динамику изменения концентрации озона и размера озоновой дыры в течение последних десятилетий, то имеется выраженная тенденция к падению средней концентрации озона в пределах огромной географической области.

Источники и примечания [ | ]

  1. Scientific Assessment of Ozone Depletion: 2006 (англ.) . Проверено 13 декабря 2007. Архивировано 16 февраля 2012 года.
  2. «Знание-сила» Новости науки: 27.12.99 (рус.) . Проверено 3 июля 2007. Архивировано 16 февраля 2012 года.

Озоновый слой - это широкий атмосферный пояс, простирающийся на высоте от 10 до 50 км над поверхностью Земли. Химически озон - это молекула, состоящая из трех атомов кислорода (молекула кислорода содержит два атома). Концентрация озона в атмосфере очень мала, и небольшие изменения количества озона приводят к серьезным изменениям интенсивности ультрафиолета, достигающего земной поверхности. В отличии от обычного кислорода озон неустойчив, он легко переходит в двухатомную, устойчивую форму кислорода. Озон - гораздо более сильный окислитель, чем кислород, и это делает его способным убивать бактерии, подавлять рост и развитие растений. Впрочем, из-за его низкой в обычных условиях концентрации в приземных слоях воздуха эти его особенности практически не влияют на состояние живых систем.

Гораздо важнее его другое свойство, делающее этот газ совершенно необходимым для всей жизни на суше. Это свойство - способность озона поглощать жесткое (коротковолновое) ультрафиолетовое (УФ) излучение Солнца. Кванты жесткого УФ обладают энергией, достаточной для разрыва некоторых химических связей, поэтому его относят к ионизирующим излучениям. Как и другие излучения этого рода, рентгеновское и гамма-излучение, оно вызывает многочисленные нарушения в клетках живых организмов. Озон образуется под воздействием высокоэнергетичной солнечной радиации, стимулирующей реакцию между О2 и свободными атомами кислорода. Под воздействием умеренной радиации он распадается, абсорбируя энергию этой радиации. Таким образом, этот цикличный процесс "съедает" опасный ультрафиолет.

Молекулы озона, как и кислорода, электрически нейтральные, т.е. не несут электрического заряда. Поэтому само по себе магнитное поле Земли не влияет на распределение озона в атмосфере. Верхний слой атмосферы - ионосфера, практически совпадает с озоновым слоем.

В полярных зонах, где силовые линии магнитного поля Земли замыкаются на ее поверхности, искажения ионосферы весьма значительны. Количество ионов, в том числе и ионизированного кислорода, в верхних слоях атмосферы полярных зон снижено. Но главная причина малого содержания озона в области полюсов - малая интенсивность солнечного облучения, падающего даже во время полярного дня под малыми углами к горизонту, а во время полярной ночи отсутствуют вовсе. Площадь полярных «дыр» в озоновом слое - надежный показатель изменений общего содержания озона в атмосфере.

Содержание озона в атмосфере колеблется вследствие многих естественных причин. Периодические колебания связаны с циклами солнечной активности; многие компоненты вулканических газов способны разрушать озон, поэтому повышение вулканической активности ведет к снижению его концентрации. Благодаря высоким, сверураганным скоростям воздушных потоков в стратосфере разрушающие озон вещества разносятся на большие площади. Переносятся не только разрушители озона, но и он сам, поэтому нарушения концентрации озона быстро разносятся на большие площади, а локальные небольшие «дыры» в озоновом щите, вызванные, например, запуском ракеты, сравнительно быстро затягиваются. Только в полярных областях воздух малоподвижен, вследствие чего исчезновение там озона не компенсируется его заносом из других широт, и полярные «озонные дыры», особенно на Южном полюсе, весьма устойчивы.

Источники разрушения озонового слоя. Среди разрушители озонного слоя можно выделить:

1) Фреоны.

Озон разрушается под воздействием соединений хлора, известных как фреоны, которые, также разрушаясь под воздействием солнечной радиации, освобождают хлор, «отрывающий» от молекул озона «третий» атом. Хлор в соединения не образовывает, но служит катализатором «разрыва». Таким образом, один атом хлора способен «погубить» много озона. Считается, что соединения хлора способны оставаться в атмосфере от 50 до 1500 лет (в зависимости от состава вещества) Земли. Наблюдения за озоновым слоем планеты проводились антарктическими экспедициями с середины 50-х.

Озоновая дыра над Антарктидой, увеличивающаяся по весне и уменьшающаяся к осени, была обнаружена в 1985 году. Открытие метеорологов вызвало цепь последствий экономического характера. Дело в том, что в существовании «дыры» была обвинена химическая промышленность, производящая вещества, содержащие фреоны, способствующие разрушению озона (от дезодорантов до холодильных установок).

В вопросе о том насколько человек повинен в образовании «озоновых дыр» - единого мнения нет.

С одной стороны - да, безусловно повинен. Производство соединений, приводящих к разрушению озона, следует свести к минимуму, а лучше и вообще прекратить. То есть отказаться от целого сектора промышленности, с оборотом в многие миллиарды долларов. А если не отказаться - то перевести ее на «безопасные» рельсы, что тоже стоит денег.

Точка зрения скептиков: человеческое влияние на атмосферные процессы, при всей его разрушительности в локальном плане, в планетарном масштабе - ничтожно. Антифреоновая кампания «зеленых» имеет вполне прозрачную экономическую и политическую подоплеку: с ее помощью крупные американские корпорации (Дюпон, например), душат своих зарубежных конкурентов, навязывая соглашения по "охране окружающей среды" на государственном уровне и насильно вводя новый технологический виток, который более слабые в экономическом отношении государства выдержать не в состоянии.

2) Высотные самолёты.

Разрушению озонного слоя способствуют не только фреоны, выделяющиеся в атмосферу и попадающие в стратосферу. К разрушению озонного слоя причастны и окислы азота, которые образуются при ядерных взрывах. Но окислы азота образуются и в камерах сгорания турбореактивных двигателей высотных самолётов. Окислы азота образуются из азота и кислорода, которые там находятся. Скорость образования окислов азота тем больше, чем выше температура, т. е. чем больше мощность двигателя.

Важна не только мощность двигателя самолёта, но и высота, на которой он летает и выпускает разрушающие озон окислы азота. Чем выше образуется окись или закись азота, тем он губительнее для озона.

Общее количество окиси азота, которое выбрасывается в атмосферу в год, оценивается в 1 млрд. т. Примерно треть этого количества выбрасывается самолётами выше среднего уровня тропопаузы (11 км). Что касается самолётов, то наиболее вредными являются выбросы военных самолётов, количество которых исчисляется десятками тысяч. Они летают преимущественно на высотах озонного слоя.

3) Минеральные удобрения.

Озон в стратосфере может уменьшаться и за счет того, что в стратосферу попадает закись азота N2O, которая образуется при денитрификации связанного почвенными бактериями азота. Такую же денитрификацию связанного азота производят и микроорганизмы в верхнем слое океанов и морей. Процесс денитрификации напрямую связан с количеством связанного азота в почве. Таким образом, можно быть уверенным в том, что с ростом количества вносимых в почву минеральных удобрений будет в такой же мере увеличиваться и количество образованной закиси азота N2O. Далее, из закиси азота образуются окислы азота, которые и приводят к разрушению стратосферного озона.

4) Ядерные взрывы.

При ядерных взрывах выделяется очень много энергии в виде тепла. Температура, равная 60000 К устанавливается уже через несколько секунд после ядерного взрыва. Это энергия огненного шара. В сильно нагретой атмосфере происходят такие преобразования химических веществ, какие при нормальных или не происходят, или протекают очень медленно. Что касается озона, его исчезновения, то наиболее опасными для него являются образующиеся при этих преобразованиях окислы азота. Так, за период с 1952 по 1971 г. в результате ядерных взрывов в атмосфере образовалось около 3 млн т. окислов азота. Дальнейшая судьба их такова: они в результате перемешивания атмосферы попадают на разные высоты, в том числе и в атмосферу. Там они вступают в химические реакции с участием озона, приводя к его разрушению. озоновый дыра стратосфера экосистема

5) Сжигание топлива.

Закись азота обнаруживается и в дымовых газах электростанций. Собственно, о том, что окись и двуокись азота присутствуют в продуктах сгорания, было известно давно. Но эти высшие окислы не влияют на озон. Они, конечно, загрязняют атмосферу, способствуют образованию в ней смога, но довольно быстро удаляются из тропосферы. Закись же азота, как уже говорилось, опасна для озона. При низких температурах она образуется в таких реакциях:

N2 + O + M = N2O + M,

2NH3 + 2O2 =N2O = 3H2.

Масштаб этого явления очень значителен. Таким путём в атмосфере ежегодно образуется примерно 3 млн т. закиси азота! Эта цифра говорит о том, что этот источник разрушения озона существенный.

Озоновая дыра над Антарктикой

О значительном уменьшении общего содержания озона над Антарктикой впервые было сообщено в 1985 г. Британской антарктической службой на основании анализа данных озонометрической станции Хэлли-Бей (76 гр. ю. ш.). Уменьшение озона наблюдалось этой службой и на Аргентинских островах (65 гр. ю. ш.).

С 28 августа по 29 сентября 1987 г. было выполнено 13 полётов самолёта-лаборатории над Антарктикой. Эксперимент позволил зарегистрировать зарождение озонной дыры. Были получены её размеры. Исследования показали, что наибольшее уменьшение количества озона имело место на высотах 14 - 19 км. Здесь же приборы зарегистрировали наибольшее количество аэрозолей (аэрозольные слои). Оказалось, что, чем больше имеется аэрозолей на данной высоте, тем меньше там озона. Самолёт - лаборатория зарегистрировал уменьшение озона, равное 50%. Ниже 14 км. изменений озона было несущественным.

Уже к началу октября 1985 г. озонная дыра (минимум количества озона) охватывает уровни с давлением от 100 до 25 гПа, а в декабре диапазон высот, на которых она наблюдается, расширяется.

Во многих экспериментах измерялось не только количество озона и других малых составляющих атмосферы, но и температуры. Была установлена самая тесная связь между количеством озона в стратосфере и температурой воздуха там же. Оказалось, что характер изменения количества озона тесно связан с тепловым режимом стратосферы над Антарктидой.

Образование и развитие озонной дыры в Антарктиде наблюдали английские учёные и в 1987 г. Весной общее содержание озона уменьшилось на 25%.

Американские исследователи проводили измерения в Антарктике зимой и ранней весной 1987 г. озона и других малых составляющих атмосферы (HCl, HF, NO, NO2, HNO3, ClONO2, N2O, CH4) c помощью специального спектрометра. Данные этих измерений позволили очертить область вокруг Южного полюса, в которой количество озона уменьшено. Оказалось, что эта область совпадает практически в точности с крайним полярным стратосферным вихрем. При переходе через край вихря резко менялось количество не только озона, но и других малых составляющих, оказывающих влияние на разрушение озона. В пределах озонной дыры (или, другими словами, полярного стратосферного вихря) концентрация HCl, NO2 и азотной кислоты была значительно меньше, чем за пределами вихря. Это имеет место потому, что хлорины в продолжении холодной полярной ночи разрушают озон в соответствующих реакциях, выступая в них как катализаторы. Именно в каталитическом цикле с участием хлора происходит основное уменьшение концентрации озона (по крайней мере 80% этого уменьшения).

Эти реакции протекают на поверхности частиц, составляющих полярные стратосферные облака. Значит, чем больше площадь этой поверхности, т. е. чем больше частиц стратосферных облаков, а значит, и самих облаков, тем быстрее в конце концов распадается озон, а значит, тем эффективнее образуется озонная дыра.

Озоновые дыры - «дети» стратосферных вихрей

Хотя озона в современной атмо сфере немного - не более одной трехмиллионной от остальных газов, - роль его чрезвычайно велика: он задерживает жест кое ультрафиолетовое излучение (коротковолновую часть солнечного спектра), разрушающее белки и нуклеиновые кислоты. Кроме того, стратосферный озон - важный климатический фактор, определяющий краткосрочные и локальные изменения погоды.

Скорость реакций деструкции озона зависит от катализаторов, в роли которых могут выступать как естественные атмосферные окислы, так и вещества, попадающие в атмосферу в результате природных катаклизмов (например, мощных извержений вулканов). Однако во второй половине прошлого века было обнаружено, что катализаторами реакций разрушения озона могут также служить вещества промышленного происхождения, и человечество не на шутку обеспокоилось...

Озон (О 3) представляет собой сравнительно редкую молекулярную форму кислорода, состоящую из трех атомов. Хотя озона в современной атмосфере немного - не более одной трехмиллионной от остальных газов, - роль его чрезвычайно велика: он задерживает жесткое ультрафиолетовое излучение (коротковолновую часть солнечного спектра), разрушающее белки и нуклеиновые кислоты. Поэтому до появления фотосинтеза - и, соответст­венно, свободного кислорода и озонового слоя в атмосфере - жизнь могла существовать только в воде.

Кроме того, стратосферный озон - важный климатиче­ский фактор, определяющий краткосрочные и локальные изменения погоды. Поглощая солнечное излучение и передавая энергию другим газам, озон нагревает стратосферу и тем самым регулирует характер планетарных тепловых и циркулярных процессов во всей атмосфере.

Неустойчивые молекулы озона в естественных условиях образуются и распадаются под действием различных факторов живой и неживой природы, причем в ходе длительной эволюции этот процесс пришел к некоторому динамическому равновесию. Скорость реакций деструкции озона зависит от катализаторов, в роли которых могут выступать как естественные атмосферные окислы, так и вещества, попадающие в атмосферу в результате природных катаклизмов (например, мощных извержений вулканов).

Однако во второй половине прошлого века было обнаружено, что катализаторами реакций разрушения озона могут также служить вещества промышленного происхождения, и человечество не на шутку обеспокоилось. Особенно общественное мнение взбудоражило открытие над Антарктидой так называемой озоновой «дыры».

«Дыра» над Антарктидой

Заметную убыль озонового слоя над Антарктидой - озоновую дыру - впервые обнаружили еще в 1957 г., в Международный геофизический год. Настоящая же история ее началась через 28 лет со статьи в майском номере журнала Nature , где было высказано предположение, что причиной аномального весеннего минимума ОСО над Антарктидой служит промышленное (в том числе и фреонами) загрязнение атмосферы (Farman et al. , 1985).

Было установлено, что озоновая дыра над Антарктидой возникает обычно раз в два года, держится около трех месяцев, а затем исчезает. Она представляет собой не сквозное отверстие, как может показаться, а углубление, поэтому более правильно говорить о «провисании озонового слоя». К сожалению, все дальнейшие исследования озоновой дыры в основном были направлены на доказательство ее антропогенного происхождения (Roan, 1989).

ОДИН МИЛЛИМЕТР ОЗОНА Атмосферный озон представляет собой сферический слой толщиной около 90 км над поверхностью Земли, причем озон в нем распределен неравномерно. Больше всего этого газа сосредоточено на высоте 26–27 км в тропиках, на высоте 20–21 км - в средних широтах и на высоте 15–17 км - в полярных областях.
Общее содержание озона (ОСО), т. е. количество озона в атмосферном столбе в конкретной точке, измеряется по поглощению и излучению солнечной радиации. В качестве единицы измерения используется так называемая единица Добсона (е. Д.), соответствующая толщине слоя чистого озона при нормальном давлении (760 мм рт. ст.) и температуре 0° С. Сто единиц Добсона соответствуют толщине озонового слоя в 1 мм.
Величина содержания озона в атмосфере испытывает суточные, сезонные, годовые и многолетние колебания. При среднем глобальном ОСО в 290 е. Д. мощность озонового слоя меняется в широких пределах - от 90 до 760 е. Д.
За содержанием озона в атмосфере следит мировая сеть из около ста пятидесяти наземных озонометрических станций, очень неравномерно распределенных по террито­рии суши. Такая сеть практически не может регистрировать аномалии в глобальном распределении озона, даже если линейный размер таких аномалий достигает тысячи километров. Более детальные данные об озоне получают с помощью оптической аппаратуры, установленной на искусственных спутниках Земли.
Нужно отметить, что само по себе некоторое уменьшение общего содержания озона (ОСО) не является катастрофическим, особенно в средних и высоких широтах, потому что облака и аэрозоли также могут поглощать ультрафиолетовое излучение. В той же Центральной Сибири, где число облачных дней велико, отмечается даже дефицит ультрафиолета (около 45 % от медицинской нормы).

Сегодня существуют разные гипотезы относительно химических и динамических механизмов образования озоновых дыр. Однако в химическую антропогенную теорию не укладывается много известных фактов. Например, рост содержания стратосферного озона в отдельных географических регионах.

Вот самый «наивный» вопрос: почему дыра образуется в южном полушарии, хотя фреоны вырабатываются в северном, при том что неизвестно, имеется ли в это время воздушное сообщение между полушариями?

Заметную убыль озонового слоя над Антарктидой впервые обнаружили еще в 1957 г., а спустя три десятилетия вину за это возложили на промышленность

Ни одна из существующих теорий не опирается на широкомасштабные детальные измерения ОСО и исследования процессов, про­исходящих в стратосфере. Ответить на вопрос о степени изолированности полярной стратосферы над Антарктидой, как и на ряд других вопросов, связанных с проблемой образования озоновых дыр, удалось лишь с помощью нового метода слежения за движениями воздушных потоков, предложенного В. Б. Кашкиным (Кашкин, Сухинин, 2001; Kashkin et al. , 2002).

Воздушные потоки в тропо­сфере (до высоты 10 км) с давних пор прослеживали, наблюдая за поступательными и вращательными перемещениями облаков. Озон, по сути, также представляет собой огромное «облако» над всей поверхностью Земли, и по изменениям его плотности можно судить о движе­нии воздушных масс выше 10 км, - так же, как мы узнаем направление ветра, глядя на облачное небо в пасмурный день. Для этих целей плотность озона следует измерять в точках пространственной решетки с определенным временным интервалом, например, каждые 24 часа. Проследив, как изменилось поле озона, можно оценить угол его поворота за сутки, направление и скорость движения.

ЗАПРЕТ НА ФРЕОНЫ - КТО ВЫИГРАЛ? В 1973 г. американцы Ш. Роуланд и М. Молина обнаружили, что атомы хлора, выделяющиеся из некоторых летучих искусственных химических веществ под действием солнечного излучения, могут разрушать стратосферный озон. Ведущую роль в этом процессе они отвели так называемым фреонам (хлорфторуглеродам), которые в то время широко использовались в бытовых холодильниках, в кондиционерах, в качестве газа-вытеснителя в аэрозолях и т. д. В 1995 г. эти ученые совместно с П. Крутценом были удостоены за свое открытие Нобелевской премии по химии.
На производство и использование хлорфторуглеродов и других веществ, разрушающих озоновый слой, стали налагаться ограничения. Монреальский протокол по веществам, разрушающим озоновый слой, который предусматривает контроль за 95 соединениями, в настоящее время подписали более 180 государств. В законе Российской федерации об охране окружающей природной среды также есть специальная статья, посвященная
охране озонового слоя Земли. Запрет на производство и потребление озоноразрушающих веществ имел серьезные экономические и политические последствия. Ведь фреоны обладают массой достоинств: они малотоксичны по сравнению с другими хладагентами, химически устойчивы, негорючи и совместимы со многими материалами. Поэтому руководители химической промышленности, особенно в США, вначале были против запрета. Однако позднее к запрету присоединился концерн Дюпон, предложивший использовать в качестве альтернативы фреонам гидрохлорфторуглероды и гидрофторуглероды.
В западных странах начался «бум» с заменой старых холодильников и кондиционеров новыми, не содержащими озоноразрушающих веществ, хотя такие технические устройства имеют более низкий КПД, менее надежны, потребляют больше энергии и при этом более дорогостоящи. Компании, первыми начавшие применять новые хладагенты, оказались в выигрыше и получили громадные прибыли. Только в США убытки от запрета на хлорфторуглероды составили десятки, если не более, миллиардов долларов. Появилось мнение, что так называемая озоносберегающая политика могла быть инспирирована владельцами крупных химических корпораций с целью укрепить свое монопольное положение на мировом рынке

С помощью нового метода была исследована динамика озонового слоя в 2000 г., когда над Антарктидой наблюдалась рекордно большая озоновая дыра (Kashkin et al. , 2002). Для этого использовались спутниковые данные о плотности озона по всему южному полушарию, от экватора до полюса. В результате было установлено, что содержание озона минимально в центре воронки так называемого циркумполярного вихря, которая образовалась над полюсом, на чем мы подробно остановимся ниже. На основе этих данных была выдвинута гипотеза природного механизма образования озоновых «дыр».

Глобальная динамика стратосферы: гипотеза

Циркумполярные вихри образуются при движении стратосферных воздушных масс в меридиональном и широтном направлениях. Как это происходит? На теплом экваторе стратосфера выше, а на холодном полюсе - ниже. Воздушные потоки (вместе с озоном) скатываются со стратосферы как с горки, и движутся все быстрее от экватора к полюсу. Движение с запада на восток происходит под воздействием силы Кориолиса, связанной с вращением Земли. В результате потоки воздуха как бы наматываются, как нити на веретено, на южное и северное полушария.

«Веретено» воздушных масс вращается в течение всего года в обоих полушариях, но более выражено в конце зимы и начале весны, потому что высота стратосферы на экваторе почти не меняется в течение года, а на полюсах она выше летом и ниже зимой, когда там особенно холодно.

Слой озона в средних широтах создается за счет мощного притока с экватора, а также в результате фотохимических реакций, происходящих на месте. А вот озон в районе полюса обязан своим происхождением в основном поступлению с экватора и из средних широт, и его содержание там довольно низкое. Фотохимические реакции на полюсе, куда солнечные лучи падают под малым углом, идут медленно, а значительная часть озона, поступающего с экватора, успевает разрушиться в пути.

На основе спутниковых данных о плотности озона была выдвинута гипотеза естественного механизма образования озоновых дыр

Но воздушные массы движутся так не всегда. В самые холодные зимы, когда стратосфера над полюсом очень низко опускается над поверхностью Земли и «горка» становится особенно крутой, ситуация меняется. Стратосферные потоки скатываются так быстро, что возникает эффект, знакомый каждому, кто наблюдал, как вода стекает через отверстие в ванне. Достигнув определенной скорости, вода начинает быстро вращаться, а вокруг отверстия образуется характерная воронка, создаваемая центробежной силой.

Нечто подобное происходит и в глобальной динамике стратосферных потоков. Когда потоки стратосферного воздуха набирают достаточно большую скорость, центробежная сила начинает отжимать их от полюса к средним широтам. В результате воздушные массы движутся от экватора и от полюса навстречу друг другу, что приводит к формированию быстро вращающегося «вала» вихря в области средних широт.

Обмен воздухом между экваториальной и полярной областями прекращается, озон с экватора и из средних широт на полюс не поступает. Кроме того, оставшийся на полюсе озон, как в центрифуге, отжимается к средним широтам центробежной силой, поскольку он тяжелее воздуха. В результате концентрация озона внутри воронки резко падает - над полюсом образуется озоновая «дыра», а в средних широтах - область высокого содержания озона, соответствующая «валу» циркумполярного вихря.

Весной антарктическая стратосфера прогревается и поднимается выше - воронка исчезает. Воздушное сообщение между средними и высокими широтами восстанавливается, к тому же ускоряются фотохимические реакции образования озона. Озоновая дыра исчезает до новой особенно холодной зимы на Южном полюсе.

А что в Арктике?

Хотя динамика стратосферных потоков и, соответственно, озонового слоя в северном и южном полушариях в целом схожа, озоновая дыра время от времени возникает только над Южным полюсом. Над Северным полюсом озоновых дыр не возникает, поскольку зимы там мягче и стратосфера никогда не опускается настолько низко, чтобы воздушные потоки набрали скорость, необходимую для образования воронки.

Хотя циркумполярный вихрь образуется и в северном полушарии, озоновых дыр там не наблюдается из-за более мягкой, чем в южном полушарии, зимы

Есть и еще одно важное отличие. В южном полушарии циркумполярный вихрь вращается почти в два раза быстрее, чем в северном. И это неудивительно: Антарктида окружена морями и вокруг нее существует циркумполярное морское течение - по существу, вместе вращаются гигантские массы воды и воздуха. Иная картина в северном полушарии: в средних широтах там находятся материки с горными хребтами, и трение воздушной массы о земную поверхность не позволяет циркумполярному вихрю набрать достаточно большую скорость.

Однако в средних широтах северного полушария иногда появляются небольшие озоновые «дыры» иного происхождения. Откуда они берутся? Движение воздуха в стратосфере средних широт гористого северного полушария напоминает движение воды в мелком ручье с каменистым дном, когда на поверхности воды образуются многочисленные водовороты. В средних широтах северного полушария роль рельефа поверхности дна играют перепады температур на границе континентов и океанов, горных массивов и равнин.

Резкая смена температуры на поверхности Земли приводит к формированию в тропосфере вертикальных потоков. Стратосферные ветры, наталкиваясь на эти потоки, создают вихри, которые могут вращаться в обоих направлениях с равной вероятностью. Внутри них появляются области с пониженным содержанием озона, то есть озоновые дыры, намного меньшие по размеру, чем на Южном полюсе. И нужно отметить, что такие вихри с разными направлениями вращения были обнаружены при первой же попытке.

Таким образом, динамика стратосферных воздушных потоков, которую мы проследили, наблюдая за облаком озона, позволяет дать правдоподобное объяснение механизма образования озоновой дыры над Антарктидой. По-видимому, подобные изменения озонового слоя, обусловленные аэродинамическими явлениями в стратосфере, имели место задолго до появления человека.

Все вышесказанное вовсе не означает, что фреоны и другие газы промышленного происхождения не оказывают разрушающего действия на озоновый слой. Однако ученым еще предстоит выяснить, каково соотношение природных и антропогенных факторов, влияющих на образование озоновых дыр, - делать поспешные выводы в столь важных вопросах недопустимо.

Существует много гипотез, пытающихся объяснить сокращение концентрации озона. Причины его колебаний в атмосфере Земли связаны:

  • · с динамическими процессами, происходящими в атмосфере Земли (внутренние гравитационные волны, Азорский антициклон и др.);
  • · с влиянием Солнца (колебания его активности);
  • · с вулканизмом, как следствием геологических процессов (истечение из вулканов фреонов, участвующих в разрушении озонового слоя, вариации магнитного поля Земли и др.);
  • · с естественными процессами, происходящими в верхних оболочках Земли, включая деятельность азотопродуцирующих микроорганизмов, морские течения (феномен Эль-Ниньо), лесные пожары и др. ;
  • · с антропогенным фактором, связанным с хозяйственной деятельностью человека, когда продуцируются в атмосферу значительные объемы озонразрушающих соединений.

В последние десятилетия действие антропогенных факторов резко возросло, что привело к возникновению экологических проблем, которые неожиданно были самими людьми превращены в глобальные: парникового эффекта, кислотных дождей, уничтожения лесов, опустынивания территорий, загрязнения среды вредными веществами, сокращения биологического разнообразия планеты.

Часть ученых считает, что именно хозяйственная деятельность человека во многом увеличила долю галогенового пути распада стратосферного озона, что спровоцировало возникновение озоновых дыр.

Монреальский протокол 1987 г. запретил производство хладогенов, которые в последние полвека позволяли сохранять пищевые продукты и тем самым не только позволили сделать жизнь человека более комфортной, но и спасали жизни многим миллионам людей, страдающим от нехватки продовольствия. По мере запрещения дешёвых хладоагентов слаборазвитые страны оказались не способны приобретать дорогостоящие рефрижераторы. Поэтому они не могут хранить произведенную ими сельскохозяйственную продукцию. Дорогостоящее импортное оборудование, разработанное в странах инициаторов «борьбы с озоновыми дырами», приносит им немалые доходы. Запрещение хладоагентов способствовало повышению смертности населения именно в беднейших странах.

Сегодня можно с уверенностью говорить о том, что нет каких-либо строго научно доказанных свидетельств относительно разрушительного влияния искусственно созданных хлорфлюокарбонных молекул на озоновый слой планеты. Но в научной среде преобладает точка зрения, по которой во второй половине XX века причиной уменьшения толщины озонового слоя является антропогенный фактор, который в виде выделения хлор- и бромсодержащих фреонов привел к значительному утонению озонового слоя.

Фреоны -- фторсодержащие производные насыщенных углеводородов (главным образом метана и этана), используемые как хладагенты в холодильных машинах. Кроме атомов фтора, в молекулах фреонов содержатся обычно атомы хлора, реже -- брома. Известно более 40 различных фреонов. Большинство из них выпускается промышленностью.

Хладон 22 (Фреон 22) -- относится к веществам 4-го класса опасности. Под действием температур свыше 400°C может разлагаться с образованием высокотоксичных продуктов: тетрафторэтилена (4-й класс опасности), хлористого водорода (2-й класс опасности), фтористого водорода (1-й класс опасности).

Таким образом, полученные данные укрепили вывод многих (но не всех!) исследователей в том, что наблюдаемая потеря озона в средних и высоких широтах в основном обусловлена антропогенными хлор- и бромсодержащими соединениями.

Но согласно другим представлениям образование «озоновых дыр» в значительной мере естественный, периодический процесс, не связанный исключительно с вредным воздействием человеческой цивилизации. Эту точку зрения сегодня разделяют не многие не только по причине отсутствия у них аргументов, а по причине того, что оказалось выгоднее идти в кильватере «глобальных утопий». Многие ученые, в отсутствии средств на научные исследования, стали и становятся жертвами грантов для обоснования идей «глобального экологического шовинизма» и виновности в этом прогресса.

Как указывает Г. Крученицкий, А, Хргиан, крупнейший специалист России по озону, практически первым обратил внимание на то, что образование и исчезновение озоновых дыр в северном полушарии коррелирует с атмосферно-динамическими, а не химическими процессами. Содержание озона может измениться на несколько десятков процентов в течении двух - трех суток. То есть дело не в озоноразрушающих веществах, а в динамике самой атмосферы.

Е. Борисенков, крупный специалист в области изучения атмосферы, на основе обработки данных девяти западноевропейских станций за двадцать три года установил корреляцию между 11-летними циклами солнечной активности и изменениями озона в атмосфере Земли.

Причины возникновения озоновых дыр в большинстве своем связывают именно с антропогенными источниками соединений, проникающими в стратосферный слой атмосферы Земли. Однако есть одна загвоздка. Она состоит в том, что основные источники озоноразрушающих соединений не располагаются в полярных (южных и северных) широтах, а сконцентрированы ближе к экватору и практически целиком находятся в северном полушарии. В то время как наиболее частые явления возникновения утонения мощности озонового слоя (собственно появление озоновых дыр) наблюдаются в Антарктиде (южном полушарии) и реже и Арктической зоне.

То есть источники озоноразрушающих соединений должны быть быстро и хорошо перемешиваться в атмосфере Земли. При этом быстро покидать нижние слои атмосферы, где также должны наблюдаться их реакции с участием озона. Справедливости ради необходимо отметить, что в тропосфере озона значительно меньше, чем в стратосфере. К тому же «срок жизни» этих соединений может достигать нескольких лет. Поэтому они могут достигать стратосферы в условиях доминирующих вертикальных перемещений воздушных масс и тепла. Но здесь появляется трудность. Поскольку основные движения, связанные с тепломассопереносом (тепло + переносимая воздушная масса), осуществляются именно в тропосфере. А поскольку температура воздуха уже на высоте 11-10 км постоянна и составляет около - 50?С, то этот тепломассоперенос тропосферного слоя в стратосферный должен быть замедлен. И участие антропогенных источников, разрушающих озоновый слой, может оказаться не столь значительным, как считается до сих пор.

Следующий факт, который может снизить роль антропогенного фактора в разрушении озонового слоя Земли, это появление озоновых дыр по большей части в весеннее или зимнее время. Но это, во-первых, противоречит допущению о возможности быстрого перемешивания озоноразрушающих соединений в атмосфере Земли и их проникновению в стратосферный слой высокой концентрации озона. Во-вторых, антропогенный источник озоноразрушающих соединений является постоянно действующим. Следовательно, причину появления озоновых дыр именно весной и зимой, да еще в полярных широтах, антропогенной причиной объяснить сложно. Зато наличие полярных зим и естественное уменьшение солнечной радиации в зимнее время удовлетворительно объясняет естественную причину возникновения озоновых дыр именно над Антарктидой и Арктикой. Например, концентрации озона летом в атмосфере Земли варьируют от 0 до 0,07%, а зимой от 0 до 0,02 %.

В Антарктиде и в Арктике механизм разрушения озона в принципе отличается от более высоких широт. Здесь в основном происходит превращение неактивных форм галогенсодержащих веществ в оксиды. Реакция протекает на поверхности частиц полярных стратосферных облаков. В результате практически весь озон разрушается в реакциях с галогенами. При этом, за 40-50% ответственен хлор и порядка 20-40% -- бром.

С приходом полярного лета количество озона увеличивается и снова выходит на прежнюю норму. То есть колебания концентрации озона над Антарктикой -- сезонные. Это признают все. Но если всё-таки раньше сторонники антропогенных источников озоноразрушающих соединений были склонны утверждать, что в течение года наблюдалась устойчивая динамика уменьшения концентрации озона, то в последующем эта динамика оказалась противоположной. Озоновые дыры начали уменьшаться. Хотя, по их мнению, восстановление озонового слоя должно занять несколько десятилетий. Поскольку считалось, что в атмосфере накопился огромный объём фреонов антропогенных источников, которые имеют время жизни десятки, и даже сотни лет. Поэтому затягивание озоновой дыры не стоит ожидать ранее 2048 года. Как видим, этот прогноз не оправдался. Зато усилия по снижению объемов производства фреонов были приняты кардинальные.

организм ультрафиолетовый озоновый морской