Особенности сжигания твердого топлива. Горение жидкого и твердого топлива

К твердому топливу относятся древесина, торф и каменный уголь. Процесс сгорания всех видов твердого топлива обладает сходными особенностями.

Топливо нужно размещать на колосниковой решетке печи слоями, соблюдая циклы сжигания - такие, как загрузка, подсушка, разогрев слоя, горение с выделе­нием летучих веществ, догорание остатков и удаление шлаков.

Каждая стадия сжигания топлива характери­зуется определенными показателями, которые оказы­вают влияние на тепловой режим печи.

В самом начале подсушки и разогрева слоя тепло не выделяется, а, наоборот, поглощается от разогретых стен топливника и несгоревших остатков. По мере то­го как топливо разогревается, начинают выделяться газообразные горючие компоненты, сгорающие в га­зовом объеме печи. Постепенно тепла выделяется все больше, и своего максимума этот процесс достигает при сгорании коксовой основы топлива.

Процесс горения топлива определяется его качест­вами: зольностью, влажностью, а также содержанием углерода и летучих горючих веществ. Кроме того, име­ет значение правильный выбор конструкции печи и режимов горения топлива. Так, при сжигании влаж­ного топлива затрачивается значительное количество тепла на ее испарение, из-за чего процесс горения за­тягивается, температура в топливнике повышается очень медленно или даже снижается (в начале горе­ния). Повышенная зольность также способствует за­медлению процесса горения. Из-за того что зольная масса обволакивает горючие компоненты, она ограни­чивает доступ кислорода в зону горения и, как след­ствие, топливо может сгорать не полностью, так что повышается образование механического недожога.

Цикл интенсивного горения топлива зависит от его химического состава, то есть соотношения между летучими газообразными компонентами и твердым уг­леродом. Сначала начинают сгорать летучие компо­ненты, выделение и воспламенение которых происхо­дит при сравнительно низких температурах (150-200° С). Этот процесс может продолжаться довольно долго, потому что летучих веществ, различных по своему хи­мическому составу и температуре воспламенения, очень много. Все они сгорают в надслоевом газовом объеме топливника.

Наибольшей температурой горения обладают оста­ющиеся после выделения летучих веществ твердые компоненты топлива. Как правило, их основу состав­ляет углерод. Температура их горения составляет 650-700° С. Твердые компоненты сгорают в тонком слое, расположенном над колосниковой решеткой. Этот процесс сопровождается выделением большого количества тепла.

Из всех видов твердого топлива самым популяр­ным являются дрова. В них содержится большое коли­чество летучих веществ. С точки зрения теплоотдачи лучшей считается древесина березы и лиственницы. После сгорания березовых дров выделяется много теп­ла и образуется минимальное количество угарного га­за. Дрова из лиственницы также выделяют много теп­ла; при их горении массив печи нагревается очень быстро, а значит, и расходуются они более экономич­но, чем березовые. Но вместе с тем после сгорания дров из лиственницы выделяется большое количество угарного газа, поэтому необходимо внимательно отно­ситься к манипуляциям с воздушной заслонкой. Мно­го тепла также выделяют дубовые и буковые дрова. В целом использование тех или иных дров зависит от наличия поблизости лесного массива. Главное, чтобы дрова были сухими, а чурки имели одинаковые раз­меры.

Каковы же особенности горения дров? В начале процесса температура в топливнике и газоходах быст­ро нарастает. Максимальное ее значение достигается в стадии интенсивного горения. При догорании про­исходит резкое снижение температуры. Для поддержа­ния процесса горения необходим постоянный доступ в топку определенного количества воздуха. В кон­струкции бытовых печей не предусматривается нали­чие специальной аппаратуры, которая регулирует по­ступление воздуха в зону горения. Для этой цели используется поддувальная дверка. Если она открыта, в топку поступает постоянное количество воздуха.

В печах с периодической загрузкой потребность в воздухе меняется в зависимости от стадии горения. Когда происходит интенсивное выделение летучих веществ, кислорода обычно не хватает, поэтому воз­можен так называемый химический недожог топлива и выделенных им горючих газов. Это явление сопро­вождается потерями теплоты, которые могут дости­гать 3-5%.

На стадии дожигания остатков наблюда­ется обратная картина. Из-за переизбытка воздуха в печи увеличивается газообмен, что приводит к зна­чительному повышению потерь тепла. Согласно ис­следованиям, вместе с уходящими газами в период дожигания теряется до 25-30% тепла. Кроме того, из-за химического недожога на внутренних стенках топливника и газоходов оседают летучие вещества. Они обладают низкой теплопроводностью, поэтому полезная теплоотдача печи снижается. Большое ко­личество сажистых веществ приводит к сужению ды­мохода и ухудшению тяги. Чрезмерное скопление са­жи может также стать причиной возникновения пожара.

Сходным с дровами химическим составом облада­ет торф, который представляет собой остатки пере­гнивших растительных веществ. В зависимости от способа добычи торф может быть резным, кусковым, прессованным (в брикетах) и фрезерным (торфяная крошка). Влажность этого вида твердого топлива со­ставляет 25-40%.

Наряду с дровами и торфом, для топки печей и ка­минов зачастую применяется уголь, который по свое­му химическому составу представляет собой соедине­ние углерода и водорода и обладает высокой теплотворной способностью. Однако не всегда удает­ся приобрести действительно качественный уголь. В большинстве случаев качество этого вида топлива оставляет желать лучшего. Повышенное содержание в угле мелких фракций приводит к уплотнению топ­ливного слоя, в результате чего начинается так назы­ваемое кратерное горение, носящее неравномерный характер. При сжигании крупных кусков уголь также сгорает неравномерно, а при чрезмерной влажности топлива значительно снижается удельная теплота го­рения. К тому же такой уголь в зимний период слож­но хранить, потому что под воздействием минусовых температур уголь смерзается. Во избежание подобных и других неприятностей оптимальная влажность угля должна составлять не более 8%.

Следует иметь в виду, что использование для топки бытовых печей твердого топлива - дело достаточно хлопотное, особенно если дом большой и обогревает­ся несколькими печами. Помимо того что на заготов­ку уходит много сил и материальных средств и боль­шое количество времени затрачивается на подноску дров и угля к печам, около 2 кг угля, к примеру, вы­сыпается в поддувало, из которого удаляется и выбра­сывается вместе со скапливающимся там пеплом.

Для того чтобы процесс сжигания твердого топли­ва в бытовых печах проходил с наибольшей эффектив­ностью, рекомендуется поступать следующим обра­зом. Загрузив в топливник дрова, нужно дать им разгореться, а затем засыпать большими кусками угля.

После разгорания угля его следует засыпать более мелкой фракцией с увлажненным шлаком, а через некоторое время сверху поместить смоченную смесь пепла и мелкого угля, выпавшего через колоснико­вую решетку в поддувало. При этом огня не должно быть видно. Затопленная таким образом печь спо­собна в течение целых суток отдавать тепло в поме­щение, так что хозяевам можно спокойно занимать­ся делами, не заботясь о постоянном поддержании огня. Боковые стенки печи будут горячими благода­ря постепенному сгоранию угля, равномерно отдаю­щему свою тепловую энергию. Верхний слой, состо­ящий из мелкого угля, выгорит полностью. Разгоревшийся уголь можно также присыпать сверху слоем предварительно увлажненных отходов уголь­ных брикетов.

После топки печи нужно взять ведро с крышкой, лучше, если оно будет прямоугольной формы (из не­го удобнее выбирать уголь с помощью совка). Сначала нужно убрать из топливника слой шлака и выбросить его, затем ссыпать в ведро смесь мелкого угля с пеп­лом, а также пережог и пепел и все это увлажнить, не перемешивая. Поверх полученной смеси уложить около 1,5 кг мелкого угля, на него - 3-5 кг более круп­ного. Таким образом производится одновременная под­готовка печи и топлива к следующему разжиганию. Описанную процедуру необходимо повторять постоян­но. Используя такой метод топки печи, не придется каждый раз выходить во двор, чтобы просеять пепел и пережог.

Горение твердого топлива, неподвижно лежащего на колосниковой решетке, при верхней загрузке топлива показана на рис. 6.2.

В верхней части слоя после загрузки находится свежее топливо. Под ним располагается горящий кокс, а непосредственно над решеткой - шлак. Указанные зоны слоя частично перекрывают друг друга. По мере выгорания топливо постепенно проходит все зоны. В первый период после поступления свежего топлива на горящий кокс происходит его тепловая подготовка (прогрев, испарение влаги, выделение летучих), на что затрачивается часть выделяющейся в слое теплоты. На рис. 6.2 показано примерное горение твердого топлива и распределение температуры по высоте слоя топлива. Область наиболее высокой температуры располагается в зоне горения кокса, где выделяется основное количество теплоты.

Образующийся при горении топлива шлак капельками стекает с раскаленных кусочков кокса навстречу воздуху. Постепенно шлак охлаждается и уже в твердом состоянии достигает колосниковой решетки, откуда он удаляется. Шлак, лежащий на решетке, защищает ее от перегрева, подогревает и равномерно распределяет воздух по слою. Воздух, проходящий через решетку и поступающий в слой топлива, называют первичным. Если первичного воздуха для полного горения топлива не хватает и над слоем имеются продукты неполного горения, то дополнительно подают воздух в надслойное пространство. Такой воздух называют вторичным.

При верхней подаче топлива на решетку осуществляются нижнее воспламенение топлива и встречное движение газовоздушного и топливного потоков. При этом обеспечиваются эффективное зажигание топлива и благоприятные гидродинамические условия его горения. Первичные химические реакции между топливом и окислителем происходят в зоне раскаленного кокса. Характер газообразования в слое горящего топлива показан на рис. 6.3.

В начале слоя, в кислородной зоне (К),в которой происходит интенсивное расходование кислорода, одновременно образуется оксид и диоксид углерода СО 2 и СО. К концу кислородной зоны концентрация О 2 снижается до 1- 2 %, а концентрация СО 2 достигает своего максимума. Температура слоя в кислородной зоне резко возрастает, имея максимум там, где устанавливается наибольшая концентрация СО 2 .

В восстановительной зоне (В) кислород практически отсутствует. Диоксид углерода взаимодействует с раскаленным углеродом с образованием оксида углерода:

По высоте восстановительной зоны содержание СО 2 в газе уменьшается, а СО - соответственно увеличивается. Реакция взаимодействия диоксида углерода с углеродом эндотермическая, поэтому температура по высоте восстановительной зоны падает. При наличии в газах водяных паров в восстановительной зоне возможна также эндотермическая реакция разложения Н 2 О.

Соотношение количеств получающихся в начальном участке кислородной зоны СО и СО 2 зависит от температуры и изменяется согласно выражению

где Е со и E СO2 - энергии активации образования соответственно СО и СО 2 ; А - численный коэффициент; R - универсальная газовая постоянная; Т - абсолютная температура.
Температура слоя в свою очередь зависит от концентрации окислителя, а также от степени подогрева воздуха.В восстановительной зоне горение твердого топлива и температурный фактор также имеет решающее влияние на соотношение между СО и СО 2 . С повышением температуры реакции СО 2 +С=Р 2 СО смещается вправо и содержание оксида углерода в газах повышается.
Толщины кислородной и восстановительной зон зависят в основном от типа и размера кусков горящего топлива и температурного режима. С увеличением крупности топлива толщина зон увеличивается. Установлено, что толщина кислородной зоны составляет примерно три-четыре диаметра горящих частиц. Восстановительная зона толще кислородной в 4-6 раз.

Увеличение интенсивности дутья на толщину зон практически не влияет. Это объясняется тем, что скорость химической реакции в слое значительно выше скорости смесеобразования и весь поступающий кислород мгновенно реагирует с первыми же рядами частиц раскаленного топлива. Наличие кислородной и восстановительной зон в слое характерно для горения как углерода, так и натуральных топлив (рис. 6.3). С увеличением реакционной способности топлива, а также при уменьшении его зольности толщина зон сокращается.

Характер газообразования в слое топлива показывает, что в зависимости от организации горения на выходе из слоя могут быть получены или практически инертные или горючие и инертные газы. Если целью является максимальное превращение теплоты топлива в физическую теплоту газов, то процесс следует проводить в тонком слое топлива с избытком окислителя. Если же задачей является получение горючих газов (газификация), то процесс проводят с развитым по высоте слоем при недостатке окислителя.

Сжигание топлива в топке котла соответствует первому случаю. И горение твердого топлива организуют в тонком слое, обеспечивающем максимальное течение окислительных реакций. Так как толщина кислородной зоны зависит от крупности топлива, то чем больше размер кусков, тем более толстым должен быть слой. Так, при сжигании в слое мелочи бурых и каменных углей (крупностью до 20 мм) толщину слоя поддерживают около 50 мм. При тех же углях, но кусками размером более 30 мм толщину слоя увеличивают до 200мм. Необходимая толщина слоя топлива зависит также и от его влажности. Чем больше влажность топлива, тем больше должен быть запас горящей массы в слое, чтобы обеспечить устойчивое воспламенение и горение свежей порции топлива.

Здравствуйте! В зависимости от условий протекания процесса горения в реакцию может вступить большая или меньшая доля исходных веществ. Для полного использования химической энергии топлива необходимо реакции горения топлива доводить практически до конца. В условиях промышленного сжигания топлива равновесие реакций горения достигается редко ввиду малого количества времени протекания реакций горения.

Процесс горения жидкого и твердого топлива в теории горения называют гетерогенным горением, поскольку он протекает в неоднородной (гетерогенной) системе. Если же горит смесь газов, то горение называют гомогенным.

При горении жидкого топлива в топочной камере происходит испарение топлива с поверхности капель. Образующиеся пары топлива вследствие высокой температуры в топке подвергаются термическому разложению и быстро сгорают у поверхности частиц. В этих условиях скорость процесса горения определяется интенсивностью испарения топлива. С целью увеличения суммарной поверхности капель жидкое топливо при подаче в топочную камеру подвергается мелкодисперсному распыливанию с помощью форсунок (поверхность при этом возрастает в несколько тысяч раз). Неиспарившиеся из капельки тяжелые фракции подвергаются термическому разложению (крекингу), в результате чего образуется дисперсный углерод, придающий свечение пламени.

Процесс горения твердого топлива можно разделить на две стадии. После испарения из топлива влаги происходит горение летучих веществ, которые выделяются в результате термического разложения топлива. Затем начинается горение твердого остатка (кокса). При очень быстром нагревании топлива обе стадии накладываются друг на друга, так как часть летучих веществ сгорает вместе с углеродом кокса.

Кокс частично подвергается газификации, и образующиеся газообразные продукты, состоящие в основном из окиси углерода СО, сгорают в топочном пространстве. Горение твердой частицы топлива происходит не только с ее поверхности, но и в объеме вследствие проникновения кислорода в поры. При этом на поверхности частицы образуется пограничный (ламинарный) слой газа, в котором уменьшается содержание кислорода и увеличивается содержание продуктов газификации и горения (СО и СО2). Этот пограничный слой газа препятствует подводу кислорода, и скорость реакции горения будет зависеть от скорости диффузии окислителя через пограничный слой. Для увеличения интенсивности горения увеличивают скорость окислителя (воздуха) относительно поверхности частиц топлива, что уменьшает толщину пограничного слоя.

На процесс горения топлива значительно влияют также минеральные примеси (зольность). По мере выгорания углерода на поверхности частиц топлива образуется слой золы. При низкой температуре размягчения золы и высоком содержании ее этот слой обволакивает (шлакует) частицы топлива и ухудшает процесс горения. Для удаления золового нароста при слоевом сжигании топлива производят шуровку, то есть рыхление слоя топлива.

В мощных современных котлах твердое топливо сжигается во взвешенном состоянии. Куски топлива предварительно размалываются в специальных мельницах, что увеличивает их удельную поверхность в несколько сот раз. Смесь топливной пыли и воздуха подается в топочную камеру, где топливо воспламеняется и сгорает в газовоздушном потоке. Горение топлива также протекает в две стадии, однако время сгорания частицы топлива при этом значительно уменьшается. Такой способ сжигания позволяет интенсифицировать процесс горения, а также полностью механизировать все производственные операции. Исп. литература: 1) Хзмалян Д.М., Каган Я.А. Теория горения и топочные устройства, Москва, «Энергия», 1976; 2)Теплотехника, Бондарев В.А., Процкий А.Е., Гринкевич Р.Н. Минск, изд. 2-е,"Вышейшая школа", 1976.

Горение топлива - это процесс окисления горючих компонентов, происходящий при высоких температурах и сопровождающийся выделением тепла. Характер горения определяется множеством факторов, в том числе способом сжигания, конструкцией топки, концентрацией кислорода и т. д. Но условия протекания, продолжительность и конечные результаты топочных процессов в значительной мере зависят от состава, физических и химических характеристик топлива.

Состав топлива

К твердому топливу относят каменный и бурый уголь, торф, горючие сланцы, древесину. Эти виды топлив представляют собой сложные органические соединения, образованные в основном пятью элементами - углеродом С, водородом Н, кислородом О, серой S и азотом N. В состав топлива также входит влага и негорючие минеральные вещества, которые после сгорания образуют золу. Влага и зола - это внешний балласт топлива, а кислород и азот - внутренний.

Основным элементом горючей части является углерод, он обуславливает выделение наибольшего количества тепла. Однако, чем больше доля углерода в составе твердого топлива, тем труднее оно воспламеняется. Водород при сгорании выделяет в 4,4 раза больше тепла, чем углерод, но его доля в составе твердых топлив невелика. Кислород, не будучи теплообразующим элементом и связывая водород и углерод, снижает теплоту сгорания, поэтому является элементом нежелательным. Особенно велико его содержание в торфе и древесине. Количество азота в твердом топливе небольшое, но он способен образовывать вредные для окружающей среды и человека оксиды. Также вредной примесью является сера, она выделяет мало теплоты, но образующиеся оксиды приводят к коррозии металла котлов и загрязнению атмосферы.

Технические характеристики топлива и их влияние на процесс горения

Важнейшими техническими характеристиками топлива являются: теплота сгорания, выход летучих веществ, свойства нелетучего остатка (кокса), зольность и влагосодержание.

Теплота сгорания топлива

Теплота сгорания - это количество тепла, выделяющееся при полном сгорании единицы массы (кДж/кг) или объема топлива (кДж/м3). Различают высшую и низшую теплоту сгорания. В высшую входит тепло, выделяемое при конденсации паров, которые содержатся в продуктах сгорания. При сжигании топлива в топках котлов уходящие дымовые газы имеют температуру, при которой влага находится в парообразном состоянии. Поэтому в этом случае применяют низшую теплоту сгорания, которая не учитывает теплоту конденсации водяных паров.

Состав и низшая теплота сгорания всех известных месторождений угля определены и приводятся в расчетных характеристиках.

Выход летучих веществ

При нагревании твердого топлива без доступа воздуха под воздействием высокой температуры сначала выделяются водяные пары, а затем происходит термическое разложение молекул с выделением газообразных веществ, получивших название летучих веществ.

Выход летучих веществ может происходить в интервале температур от 160 до 1100 °С, но в среднем - в области температур 400-800 °С. Температура начала выхода летучих, количество и состав газообразных продуктов зависят от химического состава топлива. Чем топливо химически старше, тем меньше выход летучих и выше температура начала их выделения.

Летучие вещества обеспечивают более раннее воспламенение твердой частицы и оказывают значительное влияние на горение топлива. Молодые по возрасту топлива - торф, бурый уголь - легко загораются, сгорают быстро и практически полностью. Наоборот, топливо с низким выходом летучих, например, антрацит, загорается труднее, горит намного медленнее и сгорает не полностью (с повышенной потерей тепла).

Свойства нелетучего остатка (кокса)

Твердая часть топлива, оставшаяся после выхода летучих, состоящая в основном из углерода и минеральной части, называется коксом. Коксовый остаток может быть в зависимости от свойств органических соединений, входящих в горючую массу: спекшимся, слабоспекшимся (разрушающимся при воздействии), порошкообразным. Антрацит, торф, бурые угли дают порошкообразный нелетучий остаток. Большинство каменных углей спекается, но не всегда сильно. Слипшийся или порошкообразный нелетучий остаток дают каменные угли с очень большим выходом летучих (42-45%) и с очень малым выходом (менее 17%).

Структура коксового остатка важна при сжигании угля в топках на колосниковых решетках. При факельном сжигании в энергетических котлах характеристика кокса не имеет большого значения.

Зольность

Твердое топливо содержит наибольшее количество негорючих минеральных примесей. Это прежде всего глина, силикаты, железный колчедан, но также могут входить закись железа, сульфаты, карбонаты и силикаты железа, оксиды различных металлов, хлориды, щелочи и т.д. Большая часть их попадает при добыче в виде пород, между которыми залегают пласты угля, но присутствуют и минеральные вещества, перешедшие в топливо из углеобразователей или в процессе преобразования его исходной массы.

При сжигании топлива минеральные примеси претерпевают ряд реакций, в результате которых образуется твердый негорючий остаток, называемый золой. Вес и состав золы не идентичны весу и составу минеральных примесей топлива.

Свойства золы играют большую роль в организации работы котла и топки. Ее частички, уносимые продуктами сгорания, при высоких скоростях истирают поверхности нагрева, а при малых скоростях отлагаются на них, что ведет к ухудшению теплопередачи. Зола, уносимая в дымовую трубу, способна нанести вред окружающей среде, во избежание этого требуется установка золоуловителей.

Важным свойством золы является ее плавкость, различают тугоплавкую (выше 1425 °С), среднеплавкую (1200-1425 °С) и легкоплавкую (менее 1200 °С) золу. Зола, прошедшая стадию плавления и превратившаяся в спекшуюся или сплавленную массу, называется шлаком. Температурная характеристика плавкости золы имеет большое значение для обеспечения надежной работы топки и поверхностей котла, правильный выбор температуры газов около этих поверхностей позволит исключить шлакование.

Влага - нежелательная составляющая топлива, она наряду с минеральными примесями является балластом и уменьшает содержание горючей части. Помимо этого, она снижает тепловую ценность, так как дополнительно требуются затраты энергии на ее испарение.

Влага в топливе может быть внутренней и внешней. Внешняя влага содержится в капиллярах или удерживается на поверхности. С химическим возрастом количество капиллярной влаги сокращается. Поверхностной влаги тем больше, чем меньше куски топлива. Внутренняя влага входит в органическое вещество.

Способы сжигания топлива в зависимости от вида топки

Основные виды топочных устройств:

  • слоевые,
  • камерные.

Слоевые топки предназначены для сжигания крупнокускового твердого топлива. Они могут быть с плотным и кипящим слоем. При сжигании в плотном слое воздух для горения проходит через слой, не влияя на его устойчивость, то есть сила тяжести горящих частиц превышает динамический напор воздуха. При сжигании в кипящем слое благодаря повышенной скорости воздуха частицы переходят в состояние "кипения". При этом происходит активное перемешивание окислителя и топлива, благодаря чему интенсифицируется горение топлива.

В камерных топках сжигают твердое пылевидное топливо, а также жидкое и газообразное. Камерные топки подразделяются на циклонные и факельные. При факельном сжигании частицы угля должны быть не более 100 мкм, они сгорают в объеме топочной камеры. Циклонное сжигание допускает больший размер частиц, под влиянием центробежных сил они отбрасываются на стенки топки и полностью выгорают в закрученном потоке в зоне высоких температур.

Горение топлива. Основные стадии процесса

В процессе горения твердого топлива можно выделить определенные стадии: подогрев и испарение влаги, возгонка летучих и образование коксового остатка, горение летучих и кокса, образование шлака. Такое деление процесса горения относительно условно, так как хотя эти этапы протекают последовательно, частично они налагаются друг на друга. Так, возгонка летучих веществ начинается до окончательного испарения всей влаги, образование летучих идет одновременно с процессом их горения, так же как и начало окисления коксового остатка предшествует окончанию горения летучих, а дожигание кокса может идти и после образования шлака.

Время течения каждой стадии процесса горения в значительной мере определяется свойствами топлива. Дольше всего длится стадия горения кокса, даже у топлив с большим выходом летучих. Существенное влияние на продолжительность стадий процесса горения оказывают разнообразные режимные факторы и конструктивные особенности топки.

1. Подготовка топлива до воспламенения

Топливо, поступающее в топку, подвергается нагреванию, в результате чего при наличии влаги происходит ее испарение и подсушка топлива. Время, необходимое на подогрев и подсушку, зависит от количества влаги и температуры, с которой топливо подается в топочное устройство. Для топлив с большим содержанием влаги (торф, влажные бурые угли) стадия прогрева и подсушивания сравнительна продолжительна.

В слоевые топки топливо подают с температурой, приближенной к окружающей среде. Только в зимнее время в случае смерзания угля его температура ниже, чем в котельном помещении. Для сжигания в факельных и вихревых топках топливо подвергают дроблению и размолу, сопровождаемому сушкой горячим воздухом или дымовыми газами. Чем выше температура поступающего топлива, тем меньше времени и тепла необходимо на подогрев его до температуры воспламенения.

Подсушка топлива в топке происходит за счет двух источников тепла: конвективного тепла продуктов сгорания и лучистого тепла факела, обмуровки, шлака.

В камерных топках подогрев осуществляется преимущественно за счет первого источника, то есть подмешивания к топливу продуктов сгорания в месте его ввода. Поэтому одно из важных требований, предъявляемых к конструкции устройств для ввода топлива в топку, - обеспечение интенсивного подсоса продуктов сгорания. Уменьшению времени нагрева и подсушки также способствует более высокая температура в топке. С этой целью при сжигании топлив с началом выхода летучих при высоких температурах (более 400 °С) в камерных топках делают зажигательные пояса, то есть закрывают экранные трубы огнеупорным теплоизоляционным материалом, чтобы снизить их тепловосприятие.

При сжигании топлива в слое роль каждого вида источников тепла определяется конструкцией топки. В топках с цепными решетками нагревание и подсушка осуществляются преимущественно лучистым теплом факела. В топках с неподвижной решеткой и подачей топлива сверху подогрев и подсушивание происходят за счет движущихся через слой снизу вверх продуктов сгорания.

В процессе нагревания при температуре выше 110 °С начинается термическое разложение органических веществ, входящих в состав топлив. Наименее прочными являются те соединения, которые содержат значительное количество кислорода. Эти соединения распадаются при сравнительно невысоких температурах с образованием летучих веществ и твердого остатка, состоящего преимущественно из углерода.

Молодые по химическому составу топлива, содержащие много кислорода, имеют низкую температуру начала выхода газообразных веществ и дают их больший процент. Топлива с малым содержанием соединений кислорода имеют небольшой выход летучих и более высокую температуру их воспламенения.

Содержание в твердом топливе молекул, которые легко подвергаются разложению при нагревании, оказывает влияние и на реакционную способность нелетучего остатка. Сначала разложение горючей массы происходит преимущественно на наружной поверхности топлива. По мере дальнейшего прогревания пирогенетические реакции начинают происходить и внутри частиц топлива, в них повышается давление и внешняя оболочка разрывается. При сжигании топлив с большим выходом летучих коксовый остаток становится пористым и имеет большую поверхность по сравнению с плотным твердым остатком.

2. Процесс горения газообразных соединений и кокса

Собственно горение топлива начинается с воспламенения летучих веществ. В период подготовки топлива происходят разветвленные цепные реакции окисления газообразных веществ, сначала эти реакции протекают с малыми скоростями. Выделяющееся тепло воспринимается поверхностями топки и частично накапливается в виде энергии движущихся молекул. Последнее приводит к возрастанию скорости цепных реакций. При определенной температуре реакции окисления идут с такой скоростью, что выделяющееся тепло полностью покрывает теплопоглощение. Эта температура является температурой воспламенения.

Температура воспламенения не является константой, она зависит как от свойств топлива, так и от условий в зоне воспламенения, в среднем составляет 400-600 °С. После воспламенения газообразной смеси дальнейшее самоускорение реакций окисления вызывает повышение температуры. Для поддержания горения необходим непрерывный подвод окислителя и горючих веществ.

Воспламенение газообразных веществ приводит к окутыванию коксовой частицы огневой оболочкой. Горение кокса начинается, когда к концу подходит горение летучих. Твердая частица прогревается до высокой температуры, и по мере уменьшения количества летучих веществ снижается толщина пограничного горящего слоя, кислород достигает раскаленной поверхности углерода.

Горение кокса начинается при температуре 1000 °С и является самым длительным процессом. Причина в том, что, во-первых, снижается концентрация кислорода, во-вторых, гетерогенные реакции протекают более медленно, чем гомогенные. В итоге длительность горения частицы твердого топлива определяется в основном временем горения коксового остатка (около 2/3 общего времени). Для топлив с большим выходом летучих, твердый остаток составляет менее ½ начальной массы частицы, поэтому их сжигание происходит быстро и возможность недожога невысока. Химически старые топлива имеют плотную частицу, горение которой занимает почти все время нахождения в топке.

Коксовый остаток большинства твердых топлив в основном, а для некоторых видов - целиком состоит из углерода. Горение твердого углерода происходит с образованием окиси углерода и углекислого газа.

Оптимальные условия для тепловыделения

Создание оптимальных условий для процесса горения углерода - основа правильного построения технологического метода сжигания твердых топлив в котельных агрегатах. На достижение наибольшего тепловыделения в топке могут оказывать влияние следующие факторы: температура, избыток воздуха, первичное и вторичное смесеобразование.

Температура . Тепловыделение при сжигании топлива существенно зависит от температурного режима топки. При относительно низких температурах в ядре факела имеет место неполнота сгорания горючих веществ, в продуктах сгорания остаются окись углерода, водород, углеводороды. При температурах от 1000 до 1800-2000 °С достижимо полное сгорание топлива.

Избыток воздуха . Удельное тепловыделение достигает максимального значения при полном сгорании и коэффициенте избытка воздуха, равном единице. С уменьшением коэффициента избытка воздуха выделение тепла падает, так как недостаток кислорода приводит к окислению меньшего количества топлива. Понижается температурный уровень, снижаются скорости реакций, что приводит к резкому уменьшению тепловыделения.

Повышение коэффициента избытка воздуха больше единицы снижает тепловыделение еще сильнее, чем недостаток воздуха. В реальных условиях сжигания топлива в топках котлов предельные значения тепловыделения не достигаются, так как присутствует неполнота сгорания. Она во многом зависит от того, как организованы процессы смесеобразования.

Процессы смесеобразования . В камерных топках первичное смесеобразование достигается подсушкой и перемешиванием топлива с воздухом, подачей в зону подготовки части воздуха (первичного), созданием широко раскрытого факела с широкой поверхностью и высокой турбулизацией, применением подогретого воздуха.

В слоевых топках задача первичного смесеобразования состоит в том, чтобы подавать необходимое количество воздуха в разные зоны горения на решетке.

С целью обеспечения догорания газообразных продуктов неполного горения и кокса организуют процессы вторичного смесеобразования. Этим процессам способствуют: подача вторичного воздуха с высокой скоростью, создание такой аэродинамики, при которой достигается равномерное заполнение факелом всей топки и, следовательно, вырастает время пребывания газов и коксовых частичек в топке.

3. Образование шлака

В процессе окисления горючей массы твердого топлива происходят значительные изменения и минеральных примесей. Легкоплавкие вещества и сплавы с низкой температурой плавления растворяют тугоплавкие соединения.

Обязательным условием нормальной работы котлоагрегатов является бесперебойный отвод продуктов сгорания и образующегося шлака.

При слоевом сжигании шлакообразование может приводить к механическому недожогу - минеральные примеси обволакивают недогоревшие частиц кокса либо вязкий шлак может перекрывать воздушные проходы, преграждая доступ кислорода к горящему коксу. Для снижения недожога применяют различные мероприятия - в топках с цепными решетками увеличивают время нахождения шлака на решетке, производят частую шуровку.

В слоевых топках вывод шлака производится в сухом виде. В камерных топках шлакоудаление может быть сухим и жидким.

Таким образом, горение топлива является сложным физико-химическим процессом, на который оказывает воздействие большое количество различных факторов, но все они должны быть учтены при проектировании котлов и топочных устройств.

Задание………………………………………………………………………..3

Введение……………………………………………………………………...4

Теоретическая часть

1. Особенности горения твердого топлива ……………………….....6

2. Сжигание топлива в камерных топках ….………………………….9

3. Место и роль твердого топлива в энергетике России ……………..12

4. Снижение выбросов золовых частиц из топок котлов конструктивными и технологическими методами……………………14

5. Золоулавливание и типы золоуловителей…………………….…….15

6. Циклонные (инерционные) золоуловители…..……………………..16

Расчетная часть

1. Исходные данные…………………………………………………….18

2. Расчет элементарного состава рабочего топлива…………………..19
3. Расчет масс и объемов продуктов сгорания топлива при сжигании в котельных …………………………………...…………………………..19

4. Определение высоты трубы Н…………………………….…………20

5. Расчет рассеивания и нормативов предельно допустимых выбросов вредных веществ в атмосферу……………………………………….…20

6. Определение требуемой степени очистки……………………….… 21

Обоснование выбора циклона……………………………………………..22

Применяемые устройства……………………………………………. ……23

Заключение………………………………………………………………….24

Список использованной литературы……………………………………...26

Задание

1. По заданным расчетным характеристикам твердых топлив определить элементарный состав рабочего топлива.

2. Используя результаты п.1 и исходные данные, рассчитать выбросы и объемы продуктов сгорания твердых частиц А, оксидов серы SO x , оксида углерода CO, оксидов азота NO x , расход газов, поступающих в дымовую трубу при рабочих условиях котельной установки.

3. По результатам п.2 и исходным данным определить диаметр устья дымовой трубы. Определить высоту трубы H.

4. Определить наиболее ожидаемую концентрацию С м (мг/м 3) вредных веществ: оксида углерода СО, сернистого газа SO 2 , оксидов азота NO x , пыли, (золы) в приземном слое атмосферы при неблагоприятных условиях рассеивания.



5. Сравнить фактическое содержание вредных веществ в атмосферном воздухе с учетом фоновой концентрации (С м +С ф) с санитарно-гигиеническими нормами (ПДК), если ПДК СО =5 мг/м 3 , ПДК NO 2 = 0,085, ПДК SO 2 =0,5 мг/м 3 , ПДК пыли =0,5 мг/м 3 .

7. Определить требуемую степень очистки и дать рекомендации по снижению выбросов, если фактический выброс М какого-либо вещества превышает расчетный норматив (ПДВ).

8. Разработать и обосновать применяемые способы и устройства для очистки сбросных вредных веществ.

Теоретическая часть

Введение

Промышленное производство и другие виды хозяйственной деятельности человека сопровождаются выделением загрязняющих веществ в окружающую природную среду.

Значительный ущерб окружающей среде наносят котельные установки, использующие сжигание твёрдых, жидких и газообразных топлив при нагреве воды для систем отопления.

Основным источником негативного воздействия энергетики являются продукты, образующиеся при сжигании органического топлива.

Рабочая масса органического топлива состоит из углерода, водорода, кислорода, азота, серы, влаги и золы. В результате полного сгорания топлив образуются углекислый газ, водяные пары, оксиды серы (сернистый газ, серный ангидрид и зола). К числу токсичных относятся оксиды серы, зола. В ядре факела топочных камекотлов большой мощности происходит частичное окисление азота воздуха топлива с образованием оксидов азота (оксид и диоксид азота).

При неполном сгорании топлива в топках могут образовываться также оксид углерода СО 2 , углеводороды СН 4 , С 2 Н 6 , а также канцерогенные вещества. Продукты неполного сгорания весьма вредны, однако при современной технике сжигания их образование можно исключить или свести к минимуму.

Наибольшую зольность имеют горючие сланцы и бурые угли, а также некоторые сорта каменных углей. Жидкое топливо имеет небольшую зольность; природный газ является беззольным топливом.

Выбрасываемые в атмосферу из дымовых труб электростанций токсичные вещества оказывают вредное воздействие на весь комплекс живой природы и биосферу.

Комплексное решение проблемы защиты окружающей среды от воздействия вредных выбросов при сжигании топлив в котельных агрегатах включает:

· Разработку и внедрение технологических процессов, снижающих выбросы вредных веществ за счет полноты сгорания топлив и др.;

· Внедрение эффективных методов и способов очистки сбросных газов.

Наиболее эффективный путь решения экологических проблем на современном этапе – создание технологий, приближенных к безотходным. При этом одновременно решается проблема рационального использования природных ресурсов, как материальных, так и энергетических.

Особенности горения твердого топлива

Горение твердого топлива включает два периода: тепловую подготовку и собственно горение. В процессе тепловой подготовки топливо прогревается, высушивается, и при температуре около 110 начинается пирогенетическое разложение составляющих его компонентов с выделением газообразных летучих веществ. Длительность этого периода зависит главным образом от влажности топлива, размера его частиц и условий теплообмена между окружающей топочной средой и частицами топлива. Протекание процессов в период тепловой подготовки связано с поглощением теплоты главным образом на подогрев, подсушку топлива и термическое разложение сложных молекулярных соединений.

Собственно горение начинается с воспламенения летучих веществ при температуре 400-600, а выделяющаяся в процессе горения теплота обеспечивает ускоренный прогрев и воспламенение коксового остатка.

Горение кокса начинается при температуре около 1000 и является наиболее длительным процессом.

Это определяется тем, что часть кислорода в зоне у поверхности частицы израсходована на сжигание горючих летучих веществ и оставшаяся концентрация его снизилась, кроме того, гетерогенные реакции всегда уступают по скорости гомогенным для однородных по химической активности веществ.

В итоге общая длительность горения твердой частицы в основном определяется горением коксового остатка (около 2/3 общего времени горения). У молодых топлив, имеющих большой выход летучих веществ, коксовый остаток составляет менее половины начальной массы частицы, поэтому их сжигание (при равных начальных размерах) происходит достаточно быстро и возможность недожога снижается. Старые виды твердых топлив обладают крупным коксовым остатком, близким к начальному размеру частицы, горение которого занимает все время пребывания частицы в топочной камере. Время сгорания частицы с начальным размером 1мм составляет от 1 до 2,5 с в зависимости от вида исходного топлива.

Коксовый остаток большинства твёрдых топлив в основном, а для ряда твердых топлив почти целиком состоит из углерода (от 60 до 97 % органической массы топлива). Учитывая, что углерод обеспечивает основное тепловыделение при сжигании топлива, рассмотрим динамику горения углеродной частицы с поверхности. Кислород подводится из окружающ0щей среды к частице углерода за счет турбулентной диффузии (турбулентного массопереноса), имеющей достаточно высокую интенсивность, однако непосредственно у поверхности частицы сохраняется тонкий газовый слой (пограничный слой), перенос окислителя через который осуществляется по законам молекулярной диффузии.

Этот слой в значительной мере тормозит подвод кислорода к поверхности. В нем происходит догорание горючих газовых компонентов, выделяющихся с поверхности углерода в ходе химической реакции.

Выделяют диффузионную, кинетическую и промежуточную область горения. В промежуточной и особенно в диффузионной области интенсификация горения возможна усилением подвода кислорода, активизацией обдувания потоком окислителя горящих частиц топлива. При больших скоростях потока уменьшаются толщина и сопротивление ламинарного слоя у поверхности и усиливается подвод кислорода. Чем выше эта скорость, тем интенсивнее перемешивание топлива с кислородом и тем при более высокой температуре происходит переход из кинетической в промежуточную зону, а из промежуточной - в диффузионную зону горения.

Аналогичный эффект в части интенсификации горения достигается уменьшением размера частиц пылевидного топлива. Частицы малых размеров имеют более развитый тепломассообмен с окружающей средой. Таким образом, при уменьшении размера частиц пылевидного топлива расширяется область кинетического горения. Повышение температуры приводит к смещению в область диффузионного горения.

Область чисто диффузионного горения пылевидного топлива ограничена преимущественно ядром факела, отличающимся наиболее высокой температурой горения, и зоной догорания, где концентрации реагирующих веществ уже малы и их взаимодействие определяется законами диффузии. Воспламенение любого топлива начинается при относительно низких температурах, в условиях достаточного количества кислорода, т.е. в кинетической области.

В кинетической области горения определяющую роль играет скорость химической реакции, зависящая от таких факторов, как реакционная способность топлива и уровень температуры. Влияние аэродинамических факторов в этой области горения незначительно.