Система охранной сигнализации схема электрическая функциональная. Датчик дыма на микроконтроллере MSP430F2012. Приемно- контрольный прибор

Современная разработка электроники для удаленных модулей охранно-пожарной системы позволила добиться наилучших показателей надежности и отличной помехозащищенности электронной системы в целом. По вашему техническому заданию в компании «Разработка ПРО» может быть разработана любая электроника и выполнено последующее производство электронного оборудования на заказ, с качественной поддержкой проекта разработчиком. Все работы выполняются в разумные сроки по оптимальным ценам, возможный вариант разработки устройств всегда выбирается с учетом пожеланий заказчика.

Предлагаемое вашему вниманию электронное устройство было разработано для создания комплексной охранной системы сигнализации с использованием промышленной шины CAN, применяемой для обмена данными между всеми устройствами в системе. Система состоит из следующих устройств: концентратор и устройства управления силовым оборудованием, а также контроллеры шлейфов и датчиков. Применение шины CAN позволило обеспечить надежность в работе и наилучшую помехозащищенность системы. Промышленная шина CAN, в настоящее время находящая все более широкое применение в управлении автомобильными приборами, исключает сбои в пакетах данных, получаемых от различных устройств в промышленных условиях, осложненных помехами от силового оборудования и силовых кабелей.

Модуль шлейфов и датчиков (контроллер шлейфов) позволяет контролировать несколько шлейфов (с герконами) и другие датчики: цифровой датчик температуры, датчик относительной влажности воздуха, датчик дыма (задымления), пожарный датчик, оптический датчик открытия корпуса. Модуль позволяет воспроизводить звуковые сигналы, измерять аналоговое напряжение, определять ключи Dallas iButton и автоматически управлять магнитом или замком открывания двери.

Система сигнализации состоит из следующих модулей:

1. Концентратор;

2. Модуль датчиков (контроллер датчиков и шлейфов);

3. Модуль управления;

4. Усилитель (репитер CAN).

Принципиальная схема модуля "Контроллер шлейфов и датчиков охранной сигнализации"

Разработка электроники выполнена с применением (в качестве управляющего) микроконтроллера Atmel AVR 8-bit AT90CAN32. Выбор обусловлен наличием встроенного аппаратного интерфейса CAN. Для питания модуля использован преобразователь напряжения MAX5035BASA ввиду его высокой экономичности и надежности. Трансивер CAN - MCP2551 от Microchip обеспечивает формирование и чтение логических уровней на шине CAN. В качестве источников стабильного тока для питания датчиков дыма применены стабилизаторы напряжения LM317LBD в соответствующем включении. Преобразователь питания 5В/12В для датчиков дыма собран на уникальной в своем роде микросхеме LM2703MF, которая по достоинству оценена многими разработчиками и весьма распространена в настоящее время. Другие компоненты: звуковой излучатель HC0905A, газовый разрядник EC90X.

Модуль шлейфов и датчиков состоит из двух отдельных печатных плат, собираемых на латунных стойках и соединяющихся стандартным межплатным разъемом. Такое решение при разработке электронного устройства позволило более полно использовать внутренне пространство корпуса, и, как следствие, дало возможность применить стандартный корпус GAINTA с меньшими габаритами и стоимостью. На фото показаны платы модуля, соединенные только разъемом, без стоек.

Основная печатная плата модуля шлейфов и датчиков, размещенная в герметичном корпусе, содержит все основные схемные компоненты за исключением разъемов и клеммников для внешних кабелей, а также она не имеет преобразователя питания на 12В для внешних датчиков, требующих для своей работы указанного питающего напряжения.

Верхняя печатная плата модуля шлейфов и датчиков с установленными быстрозажимными разъемами для подключения охранных шлейфов и кабелей от датчиков. Для подключения шины CAN предусмотрены винтовые клемники. Также на фото виден сигнальный зеленый светодиод (сверху) и оптическая пара - ИК-светодиод и ИК-фототранзистор (снизу). Оптопара используется в качестве оптического датчика открытия корпуса.

На обратной стороне верхней печатной платы размещается управляемый преобразователь питания для внешних датчиков, требующих питающего напряжения 12В. Компоненты преобразователя питания могут не монтироваться на плату, если не предполагается подключение к модулю каких-либо специальных датчиков или внешних приборов, требующих питания 12В.

Здесь показаны обе платы модуля шлейфов и датчиков, установленные в герметичный корпус с использованием латунных стоек для печатных плат (диаметр 6мм, резьба 3мм).

Всего в модуле имеется 11 каналов, для каждого из которых отдельно задается полная информация, включающая идентификаторы района, объекта, места установки и типа датчика, подключенного к каналу.

Модуль датчиков имеет пять конфигурируемых каналов N0-N4, к которым можно подключать различные типы шлейфов или датчиков: зонды ключей iButton (шлейф шунтируется резистором 30кОм для контроля на обрыв линии), цифровые датчики температуры DS18S20 (без шунта), цифровые датчики относительной влажности воздуха HIH-4010 (без шунта), согласующие устройства для измерения напряжения сети переменного тока (без шунта), пожарные датчики ИП114-5-А, шлейфы с нормально замкнутыми герконами, шлейфы с нормально разомкнутыми герконами.

Пожарные датчики и оба типа шлейфов с герконами могут быть трех подтипов: без контрольных резисторов, с одним последовательно включенным резистором, а также с одним последовательно включенным резистором и шунтирующими резисторами на каждом герконе. Во всех конфигурациях используются резисторы номиналом 3кОм. Выбор типа датчика и его подтипа производится командами с управляющего компьютера, также как и любые другие настройки системы в целом. Все шлейфы и датчики контролируются на обрыв и короткое замыкание. Модули системы не имеют каких-либо элементов управления – кнопок, переключателей, перемычек и т.п.

Модуль датчиков имеет два специальных канала N8-N9, к которым можно подключать датчики дыма ИП212-58 (шлейфы шунтируются резистором 30кОм для контроля на обрыв линии). На каждый такой вход можно подключить до 10 датчиков дыма. В модуле установлен встроенный оптический датчик открытия корпуса, сообщения от которого передаются по отдельному каналу N10. Также в модуле датчиков имеются три канала N5-N7, предназначенных для подключения любых линий от датчиков с выходами типа «сухой контакт», замкнутых в нормальном состоянии. Модуль датчиков оснащен звуковым излучателем, который может настраиваться на автоматическую подачу звуковых сигналов (например, при прикладывании ключа iButton) или управляться командами с компьютера.

При разработке электроники в этом устройстве был предусмотрен выход для подключения электромагнитного реле, которое может управляться автоматически (при прикладывании ключа iButton с разрешенным для конкретного модуля кодом) или командами с компьютера.

Для контроля состояния системы предусмотрен выход на спаренный двухцветный (встречно-параллельная схема включения) светодиод. Возможно подключение двух отдельных светодиодов. В любом случае каждый светодиод может отдельно управляться либо автоматически, либо командами с компьютера. В случае автоматического управления выбранный светодиод вспыхивает при прикладывании к считывателю ключа iButton. Входы модуля датчиков защищены от воздействия статического электричества. На плате модуля установлен газовый разрядник и резисторы снятия нарастающего статического электричества с протяженных линий связи.

Назначение регистров модуля датчиков в области RAM

000. Данные ADC канала 0.

001. Данные ADC канала 1.

002. Данные ADC канала 2.

003. Данные ADC канала 3.

004. Данные ADC канала 4.

005. Данные ADC канала 8.

006. Данные ADC канала 9.

007. Данные ADC линии питания CAN.

009. Сброс датчика дыма на канале 8. Нормальное состояние – 0, для выполнения сброса требуется записать 1.

010. Сброс датчика дыма на канале 9. Нормальное состояние – 0, для выполнения сброса требуется записать 1.

011. Управление реле. Выключено – 0, включено – 1. По умолчанию при запуске устройства включается режим 0.

012. Режим работы светодиода LED1. Могут быть использованы следующие значения: 0 – светодиод погашен, 1 – светодиод включен постоянно, 2 – светодиод мигает (пауза 1,5 сек., вспышка 0,5 сек.), 3 – светодиод мигает (пауза 0,5 сек., вспышка 0,5 сек.), 4 – однократная вспышка светодиода длительностью 0,5 сек (по окончании автоматически выбирается режим 0 – светодиод погашен). По умолчанию при запуске устройства включается режим 0.

013. Режим работы светодиода LED2. Управление аналогично управлению светодиодом 1. По умолчанию при запуске устройства включается режим 0.

014. Управление звуком. Указывается длительность звука в ms x 10. Для вывода звука длительностью 200ms следует записать значение 20. Вывод звука не ограничивает работоспособности устройства.

015. Управление внутрисистемным светодиодом. 0 – светодиод погашен, 1 – светодиод включен постоянно, 2 – светодиод мигает (пауза 1 сек., вспышка 1 сек.). По умолчанию при запуске устройства включается режим 2.

016. Признак отсутствия перезапуска устройства. При запуске устройства сбрасывается 0. Признак может быть установлен программно в любое требуемое значение.

017. Резервная область до регистра 050 включительно.

051. Начало области кодов ключей iButton. 75 ключей по 6 байт каждый, всего 450 регистров, последний используемый регистр – 499.

Назначение регистров модуля датчиков в области EEPROM

500. Собственный адрес устройства (по умолчанию 255).

501. Режим работы устройства: 1 – модуль датчиков, 0 – модуль управления. Для этого регистра используется только чтение.

502. Номер версии программного обеспечения (старший байт). Для этого регистра используется только чтение.

503. Номер версии программного обеспечения (младший байт). Для этого регистра используется только чтение.

504. Конфигурация резисторов и количество датчиков на шлейфе канала N0. Значение десятков в этом числе определяет конфигурацию резисторов: 0 – без резисторов, 1 – с одним последовательным резистором, 2 - с одним последовательным резистором и шунтирующими резисторами на каждом датчике. Значение единиц в этом числе определяет количество датчиков на шлейфе. Например, число 24 означает, что выбрана конфигурация номер 2 (с одним последовательным резистором и шунтирующими резисторами на каждом датчике) при четырех подключенных датчиках.

505. Конфигурация резисторов и количество датчиков на шлейфе канала N1. Аналогично регистру 504 для конфигурирования канала N0.

506. Конфигурация резисторов и количество датчиков на шлейфе канала N2. Аналогично регистру 504 для конфигурирования канала N0.

507. Конфигурация резисторов и количество датчиков на шлейфе канала N3. Аналогично регистру 504 для конфигурирования канала N0.

508. Конфигурация резисторов и количество датчиков на шлейфе канала N4. Аналогично регистру 504 для конфигурирования канала N0.

509. Автоматический сброс датчиков дыма канала N8.

510. Автоматический сброс датчиков дыма канала N9.

511. Автоматическая подача звуковых сигналов.

512. Автоматическое управление реле (ключом iButton).

513. Автоматическое управление светодиодом 1 (ключом iButton).

514. Автоматическое управление светодиодом 2 (ключом iButton).

515. Увеличение всех периодов отправки сообщений в N раз. Значения 0 и 1 не увеличивают периоды отправки. Значение 2 - увеличивает все периоды в 2 раза, значение 3 - увеличивает все периоды в 3 раза и так далее.

516. Включение дополнительного преобразователя напряжения на 12В для питания внешних подключаемых датчиков (1 – вкл., 0 – выкл.).

551. Начало области идентификаторов и выбора типов датчиков каналов. Всего 11 каналов по 9 байт каждый, итого 99 байт, последний используемый регистр - 649. Назначение информации для каждого канала: район – 2 байта, объект – 2 байта, место – 4 байта, тип датчика – 1 байт.

650. Начало области кодов ключей iButton. 25 ключей по 6 байт каждый, всего 150 регистров, последний используемый регистр – 799.

800. Начало области значений периодов отправки сообщений по типам (периоды отправки определяются отдельно для каждого канала). Всего 11 каналов по 12 типов сообщений, итого 132 регистра, последний используемый регистр – 931. Записываются значения отправки в секундах. Максимальное значение 255 секунд. Множитель в регистре N515 позволяет увеличивать периоды отправки сообщений до 255 раз. Таким образом, максимальное значение периодов отправки может быть увеличено до 65025 секунд, что составляет более 18 часов.

Выбор типа датчика

0 – Датчик отсутствует, сообщения от соответствующего канала не передаются (канал выключен).

1 – Датчики (герконы) с нормально замкнутыми контактами. Шлейфы могут контролироваться на обрыв и короткое замыкание, если выбрана конфигурация номер 2 (с одним последовательным резистором и шунтирующими резисторами на каждом датчике). Шлейфы могут контролироваться только на короткое замыкание, если выбрана конфигурация номер 1 (с одним последовательным резистором). Шлейфы не контролируются на обрыв и короткое замыкание, если выбрана конфигурация номер 0 (без резисторов). Датчики могут принимать нормальное состояние и состояние срабатывания. Выдаются сообщения: 1 – нормальное состояние, 2 – срабатывание, 3 – короткое замыкание, 4 – обрыв линии.

2 – Датчик дыма. Шлейф контролируется на обрыв и короткое замыкание. Выдаются сообщения: 1 – нормальное состояние, 2 – срабатывание, 3 – короткое замыкание, 4 – обрыв линии. Требует установки шунтирующего резистора сопротивлением 30кОм. После срабатывания датчика и передачи соответствующего сообщения, датчик в течение 3-секунд автоматически сбрасывается в исходное состояние, соответствующее норме, путем прерывания подачи питания на датчик, если в регистрах настройки установлено разрешение на автоматический сброс. В ином случае сброс датчика в исходное состояние выполняется записью команды в соответствующий регистр управления.

3 – Ключ iButton. Шлейф контролируется на обрыв. Выдаются сообщения: 1 – нормальное состояние, 7 – код ключа, 3 – короткое замыкание, 4 – обрыв линии. В случае распознавания и передачи кода ключа поле данных сообщения будет содержать 6 байт кода, считанного с ключа. В соответствии с настройками возможно автоматическое управление светодиодами и выводом звука. Если код ключа совпадает с одним из кодов ключей, записанных в память модуля датчиков в области EEPROM (25 ключей) или RAM (75 ключей), то в соответствии с настройками возможно автоматическое управление реле.

4 – Датчик температуры Dallas DS18S20. Шлейф контролируется на обрыв и короткое замыкание. Выдаются сообщения: 5 – температура, 3 – короткое замыкание, 4 – обрыв линии. Не требует установки шунтирующего резистора. В случае передачи температуры поле данных сообщения будет содержать 2 байта кода (остальные 4 байта всегда будут равны 0). Первый байт определяет знак температуры: 0 – выше нуля, 1 – ниже нуля. Второй байт содержит значение температуры в градусах Цельсия.

5 – Датчик влажности Honeywell HIH-4010. Шлейф контролируется на обрыв и короткое замыкание. Выдаются сообщения: 6 – влажность, 3 – короткое замыкание, 4 – обрыв линии. Не требует установки шунтирующего резистора. В случае передачи сообщения о влажности поле данных будет содержать 1 байт кода – значение относительной влажности воздуха. Остальные 5 байт в поле данных всегда будут равны 0.

6 – Переменное напряжение (измеряется через подключаемый к соответствующему входу адаптер с гальванической развязкой). Шлейф контролируется на короткое замыкание. Выдаются сообщения: 1 – нормальное состояние, 3 – короткое замыкание, 4 – обрыв линии, 8 – напряжение на линии. Не требуется установка дополнительного шунтирующего резистора (он установлен на плате согласующего устройства). В случае передачи сообщения «напряжение на линии» поле данных будет содержать 1 байт кода – значение переменного напряжения на входе адаптера, деленное на 10. То есть, при напряжении 220В будет передаваться 022, при напряжении 430В передается 043. Остальные 5 байт в поле данных всегда будут равны 0.

7 – Пожарный датчик. Работает и контролируется аналогично шлейфу типа 1 (датчики с нормально замкнутыми контактами). Для этого типа датчиков также требуется выбирать конфигурацию подключенных контрольных резисторов и определять количество датчиков.

8 - Датчики (герконы) с нормально разомкнутыми контактами. Шлейфы могут контролироваться на обрыв и короткое замыкание, если выбрана конфигурация номер 2 (с одним последовательным резистором и шунтирующими резисторами на каждом датчике). Шлейфы могут контролироваться только на короткое замыкание, если выбрана конфигурация номер 1 (с одним последовательным резистором). Шлейфы не контролируются на обрыв и короткое замыкание, если выбрана конфигурация номер 0 (без резисторов). Датчики могут принимать нормальное состояние и состояние срабатывания. Выдаются сообщения: 1 – нормальное состояние, 2 – срабатывание, 3 – короткое замыкание, 4 – обрыв линии.

9 – Оптический датчик открытия корпуса (только для канала 10).

Типы сообщений модулей датчиков:

1. Нормальное состояние;

2. Срабатывание датчика;

3. Короткое замыкание шлейфа;

4. Обрыв линии шлейфа;

5. Температура;

6. Относительная влажность воздуха;

7. Код ключа iButton;

9. Включено;

10. Выключено;

11. Ток в линии.

Удаленное обновление программного обеспечения модулей

На всех используемых в системе модулях установлены специальные программы-загрузчики, позволяющие удаленно обновлять рабочую программу любого модуля, не нарушая работу системы в целом. Обновление программы происходит по стандартному протоколу X-modem с контролем и коррекцией ошибок, а также с проверкой правильности записи программы в памяти микроконтроллера.

Датчики дыма являются более эффективным инструментом противопожарной сигнализации, так как, в отличие от традиционных тепловых датчиков, они срабатывают до образования открытого пламени и заметного роста температуры в помещении. Ввиду сравнительной простоты реализации, широкое распространение получили оптоэлектронные датчики дыма. Они состоят из дымовой камеры, в которой установлены излучатель света и фотоприемник. Связанная с ними схема формирует сигнал срабатывания, когда обнаруживается существенное поглощение излучаемого света. Именно такой принцип действия положен в основу рассматриваемого датчика.

Приведенный здесь датчик дыма использует батарейное питание, поэтому, в целях увеличения практичности, он должен в среднем потреблять очень малый ток, исчисляемый единицами микроампер. Это позволит ему в течение нескольких лет проработать без необходимости замены батареи питания. Кроме того, в исполнительной цепи предполагается использование звукового излучателя, способного развить звуковое давление не менее 85 дБ. Типичным способом обеспечения очень малого электропотребления устройства, которое должно содержать достаточно сильноточные элементы, как, например, излучатель света и фотоприемник, является его повторно-кратковременный режим работы, причем длительность паузы должна во много раз превышать длительность активной работы.

В таком случае среднее потребление будет сводиться к суммарному статическому потреблению неактивных компонентов схемы. Реализовать такую идею помогают программируемые микроконтроллеры (МК) с возможностями перевода в микромощный дежурный режим и автоматического возобновления активной работы через заданные интервалы времени. Таким требованиям полностью отвечает 14-выводной МК MSP430F2012 с объемом встроенной Flash-памяти 2 кбайт. Данный МК после перевода в дежурный режим LPM3 потребляет ток, равный всего лишь 0.6 мкА. В эту величину также входит потребляемый ток встроенного RC-генератора (VLO) и таймера А, что позволяет продолжать счет времени даже после перевода МК в дежурный режим работы. Однако данный генератор очень нестабилен. Его частота в зависимости от окружающей температуры может варьироваться в пределах 4…22 кГц (номинальная частота 12 кГц). Таким образом, в целях обеспечения заданной длительности пауз в работе датчика, в него должна быть заложена возможность калибровки VLO. Для этих целей можно использовать встроенный высокочастотный генератор - DCO, который откалиброван производителем с точностью не хуже ±2.5% в пределах температурного диапазона 0...85°С.

Со схемой датчика можно ознакомиться на рис. 1.

Рис. 1.

Здесь в качестве элементов оптической пары, размещенных в дымовой камере (SMOKE_CHAMBER), используются светодиод (СД) и фотодиод инфракрасного (ИК) спектра. Благодаря рабочему напряжению МК 1.8…3.6 В и надлежащим расчетам других каскадов схемы, достигнута возможность питания схемы от двух батареек типа ААА. Для обеспечения стабильности излучаемого света в условиях питания нестабилизированным напряжением рабочий режим СД задается источником тока 100 мА, который собран на двух транзисторах Q3, Q4. Данный источник тока активен, когда на выходе P1.6 установлен высокий уровень. В дежурном режиме работы схемы он отключается (P1.6 = «0»), а общее потребление каскадом ИК излучателя снижается до ничтожно малого уровня тока утечки через Q3. Для усиления сигнала фотодиода применена схема усилителя фототока на основе ОУ TLV2780. При выборе этого ОУ руководствовались стоимостью и временем установления. У данного ОУ время установления составляет до 3 мкс, что позволило не использовать поддерживаемую им возможность перехода в дежурный режим работы, а взамен этого - управлять питанием усилительного каскада с выхода МК (порт P1.5). Таким образом, после отключения усилительного каскада он вообще не потребляет никакого тока, а достигнутая экономия тока составляет около 1.4 мкА.

Для сигнализации о срабатывании датчика дыма предусмотрены звуковой излучатель (ЗИ) P1 (EFBRL37C20 , ) и светодиод D1. ЗИ относится к пьезоэлектрическому типу. Он дополнен компонентами типовой схемы включения (R8, R10, R12, D3, Q2), которые обеспечивают непрерывную генерацию звука при подаче постоянного напряжения питания. Примененный здесь тип ЗИ генерирует звук частотой 3.9±0,5 кГц. Для питания схемы ЗИ выбрано напряжение 18 В, при котором он создает звуковое давление порядка 95 дБ (на расстоянии 10 см) и потребляет ток около 16 мА. Данное напряжение генерирует повышающий преобразователь напряжения, собранный на основе микросхемы IC1 (TPS61040 , TI). Требуемое выходное напряжение задано указанными на схеме номиналами резисторов R11 и R13. Схема преобразователя также дополнена каскадом изоляции всей нагрузки от батарейного питания (R9, Q1) после перевода TPS61040 в дежурный режим (низкий уровень на входе EN). Это позволяет исключить протекание токов утечки в нагрузку и, таким образом, свести общее потребление данным каскадом (при отключенном ЗИ) до уровня собственного статического потребления микросхемы IC1 (0.1 мкА). В схеме также предусмотрены: кнопка SW1 для ручного включения / отключения ЗИ; «джамперы» для конфигурации цепи питания схемы датчика (JP1, JP2) и подготовки к работе ЗИ (JP3), а также разъемы внешнего питания на этапе отладки (X4) и подключения адаптера встроенной в МК отладочной системы (X1) через двухпроводной интерфейс Spy-Bi-Wire.

Рис. 2.

После сброса МК выполняется вся необходимая инициализация, в т.ч. калибровка генератора VLO и настройка периодичности возобновления активной работы МК, равной восьми секундам. Вслед за этим МК переводится в экономичный режим работы LPM3. В этом режиме остается в работе VLO и таймер А, а ЦПУ, высокочастотная синхронизация и прочие модули ввода-вывода прекращают работу. Выход из этого состояния возможен по двум условиям: генерация прерывания по входу P1.1, которое возникает при нажатии на кнопку SW1, а также генерация прерывания таймера А, которое происходит по истечении установленных восьми секунд. В процедуре обработки прерывания по входу P1.1 вначале генерируется пассивная задержка (примерно 50 мс) для подавления дребезга, а затем изменяется на противоположное состояние линии управления ЗИ, давая возможность вручную управлять активностью ЗИ. Когда же возникает прерывание по таймеру А (прерывание ТА0), выполняется процедура оцифровки выхода усилителя фототока в следующей последовательности. Вначале выполняются четыре оцифровки при отключенном ИК светодиоде, затем - четыре оцифровки при включенном светодиоде. В дальнейшем эти оцифровки подвергаются усреднению. В конечном счете формируются две переменные: L - усредненное значение при отключенном ИК светодиоде, и D - усредненное значение при включенном ИК светодиоде. Четырехкратные оцифровки и их усреднения выполняются с целью исключения возможности ложных срабатываний датчика. С этой же целью выстраивается дальнейшая цепочка «препятствий» ложному срабатыванию датчика, начиная с блока сопоставления переменных L и D. Здесь сформулировано необходимое условие срабатывания: L - D > x, где x - порог срабатывания. Величину x выбирают опытным путем из соображений нечувствительности (например, к пыли) и гарантированного срабатывания при попадании дыма. Если условие не выполняется, происходит отключение светодиода и ЗИ, сбрасывается флаг состояния датчика (AF) и счетчик SC. После этого, выполняется настройка таймера А на возобновление активной работы через восемь секунд, и МК переводится в режим LPM3. Если условие же выполняется, проверяется состояние датчика. Если он уже сработал (AF = «1»), то никаких дальнейших действий выполнять не нужно, и МК сразу переводится в режим LPM3. Если же датчик еще не сработал (AF = «0»), то выполняется инкрементирование счетчика SC с целью подсчета числа обнаруженных выполнений условия срабатывания, что в еще большей степени позволяет повысить помехоустойчивость. Позитивное решение о срабатывании датчика принимается после обнаружения трех подряд условий срабатывания. Однако во избежание чрезмерного затягивания задержки реагирования на появление дыма, длительность нахождения в дежурном режиме сокращается до четырех секунд после первого выполнения условия срабатывания и до одной секунды - после второго. Описанный алгоритм реализует программа, доступная .

В заключение определим средний потребляемый датчиком ток. Для этого в таблицу 1 занесены данные по каждому потребителю: потребляемый ток (I) и длительность его потребления (t). Для циклически-работающих потребителей, с учетом восьмисекундной паузы, средний потребляемый ток (мкА) равен I × t/8 × 10 6 . Суммируя найденные значения, находим средний потребляемый датчиком ток: 2 мкА. Это очень хороший результат. Например, при использовании батареек емкостью 220 мА·ч расчетная длительность работы (без учета саморазряда) составит около 12 лет.

Таблица 1. Средний потребляемый ток с учетом восьмисекундной паузы в работе датчика

Предлагаем схему универсальной охранной сигнализации на небольшом 8-ми выводном микроконтроллере ATTINY-13, при всей своей простоте реализующей множество удобных режимов работы.

Принципиальная схема охранного устройства

Алгоритм работа схемы

1. При включении питания, через 10 сек схема переходит в режим охраны, сигнализируя об этом подачей импульса длительностью 0,5 сек на сирену (при условии, что шлейфы замкнуты на корпус) и подается питание на светодиод который отображает «статус» системы.

1.1. Если на момент перехода в режим охраны один из шлейфов разорван то на сирену подается три импульса продолжительностью 0,5 сек и интервалом 0,5 сек, а светодиод «статус» начинает мигать 1 раз (если разорван шлейф №1), 2 раза (если разорван шлейф №2) и 3 раза (если разорваны шлейф №1 и №2) продолжительностью 1 сек и интервалом 0,5 сек с перерывом 4 сек, режим охраны не включается.

2. Если в режиме охраны шлейф №1 разрывается, то с задержкой 3 сек (для ручного снятия с охраны) начинается оповещение (импульс на сирену продолжительностью 60 сек и импульс продолжительностью 3 сек на светодиод оптопары).
Светодиод «статус» начинает мигать, как указано в п.1.1.

2.1. Если, с момента первого разрыва шлейфа №1, в течении 3-х минут шлейф не восстановлен то выдается повтор оповещения.

2.2. Если, с момента первого разрыва шлейфа №1, в течении 6-ти минут шлейф не восстановлен то выдается повтор оповещения.

2.3 Если, с момента первого разрыва шлейфа №1, шлейф не восстановлен в течении 7-ми минут то на светодиод оптопары подается 6 импульсов продолжительностью 3 сек с периодичностью 60 минут. На период разрыва шлейфа №1 охрана ведется по шлейфу №2.

2.4 Если во время процессов оповещения по шлейфу №1 происходит разрыв шлейфа №2, то оповещение по шлейфу №2 происходит с задержкой 60 сек.

2.5 Если по истечению 60 сек. после первого разрыва шлейф №1 восстановлен на период 10 сек., на любом этапе, то через 10 сек. схема продолжает работу с п.2, за исключением светодиода «статус» который запоминает что шлейф №1 был разорван (повторение п.2.5 возможно не более 10 раз).

3. Если в режиме охраны шлейф №2 разрывается начинается оповещение (импульс на сирену продолжительностью 60 сек и импульс продолжительностью 3 сек на светодиод оптопары). Светодиод «статус» начинает мигать, как указано в п.1.1.

3.1. Если, с момента первого разрыва шлейфа №2, в течении 3-х минут шлейф не восстановлен то выдается повтор оповещения.

3.2. Если, с момента первого разрыва шлейфа №2, в течении 6-ти минут шлейф не восстановлен то выдается повтор оповещения.

3.3 Если, с момента первого разрыва шлейфа №2, шлейф не восстановлен в течении 7-ми минут то на светодиод оптопары подается 6 импульсов продолжительностью 3 сек с периодичностью 60 минут. На период разрыва шлейфа №2 охрана ведется по шлейфу №1.

3.4 Если во время процессов оповещения по шлейфу №2 происходит разрыв шлейфа №1, то оповещение по шлейфу №1 происходит с задержкой 60 сек.

3.5 Если по истечении 60 сек. после первого разрыва шлейф №2 восстановлен на период 10 сек., на любом этапе, то через 10 сек. схема продолжает работу с п.3 за исключением светодиода «статус» который запоминает что шлейф №2 был разорван (повторение п.3.5 возможно не более 10 раз).

Выбор микроконтроллера, используемого в центральном блоке, обусловливается объемом памяти программ, памяти данных, числом портов ввода/вывода быстродействием.

Будем использовать микроконтроллер ATmega.

Оценим объем памяти программ.

Алгоритм функционирования центрального блока в режиме инициализации состоит из 32 элементарный действий. Каждое действие выполняется в среднем с помощью 5 команд. В самом общем случае команда микроконтроллера выбранной серии состоит из 16 разрядов. Объем памяти программ микроконтроллеров ATmega оценивается в 16-разрядный словах. Таким образом, программа, выполняемая центральным блоком в режиме инициализации, займет в памяти программ ячеек памяти.

Алгоритм функционирования центрального блока в режиме тестирования состоит из 35 элементарный действий. Каждое действие также как и в режиме инициализации, выполняется в среднем с помощью 5 команд. Следовательно, программа, выполняемая центральным блоком в режиме тестирования, займет в памяти программ ячеек памяти.

Алгоритм функционирования центрального блока в рабочем режиме состоит из 31 элементарного действия. Каждое действие также как и в режиме инициализации, выполняется в среднем с помощью 5 команд. Следовательно, программа, выполняемая центральным блоком в режиме тестирования, займет в памяти программ ячеек памяти.

Алгоритм функционирования центрального блока при выполнении подпрограммы обработки сигнала датчика состоит из 11 элементарных действий. Каждое действие также как и в режиме инициализации, выполняется в среднем с помощью 5 команд. Следовательно, программа, выполняемая центральным блоком в режиме тестирования, займет в памяти программ ячеек памяти.

Следовательно, вся программа займет

ячеек памяти.

В память программ записываются пять параметров помещения:

1. Коэффициент полезного действия, сгоревшего топлива;

2. Удельная скорость выгорания;

Каждый из указанных параметров помещения займет одну ячейку памяти. Следовательно, параметры помещения займут в памяти программ

ячеек памяти.

При инициализации в память программ записываются адреса датчиков периферийного оборудования. Поскольку система пожарной сигнализации рассчитана на подключение 2016 датчиков, то для записи адресов датчиков необходимо

ячеек памяти.

Таким образом, необходимые исходные данные займут

ячейку памяти.

Всего для текста программы и исходных данных потребуется

ячеек памяти.

Память данных микроконтроллера должна одновременно хранить результаты измерений температуры помещения двумя датчиками, 2 пороговых значения температуры для данного помещения, 2 адреса датчика, адрес центрального прибора или мультиплексора, 2 результата сравнения значений температур с пороговыми значениями, состояние 13 счетчиков циклов, максимальное допустимое число циклов. Таким образом, минимальное число ячеек памяти данных должно быть равно

Оценим необходимое число портов ввода/вывода, требуемое для подключения периферийных устройств к микроконтроллеру.

Для подключения стандартного программатора необходимо задействовать

последовательных порта.

Для организации последовательного интерфейса RS232 необходимо использовать 2 последовательных порта. Учитывая, что с помощью одной шины указанного интерфейса осуществляется обмен с центральными приборами, а с помощью второй шины производится обмен с информационной системой высшего уровня, то необходимо использование

последовательных порта.

Центральный блок должен принимать сигналы, поступающие от типовых ручных пожарных извещателей. Типовые ручные пожарные извещатели представляют собой адресные устройства, поэтому для приема сигналов от них достаточно использовать

последовательный порт ввода. Все ручные пожарные извещатели необходимо подключить к одному шлейфу.

В центрально приборе предусматривается временное хранение информации о показаниях датчиков. Следовательно, необходимо организовать программное управление работой микросхем внешней памяти. Современные микросхемы внешней последовательной памяти имеют 6 выводов, из которых на один подается сигнал выбора микросхемы. Для упрощения процедуры управления подобной памятью на каждый элемент памяти удобно подавать сигнал выбора микросхемы отдельно. Таким образом, для управления внешней памятью необходимо

последовательных портов ввода/вывода, где K -- число микросхем внешней последовательной памяти.

Следовательно, для организации работы устройств, подключаемых к микроконтроллеру центрального блока, необходимо

последовательных портов ввода/вывода.

Выберем микроконтроллер ATmega128 . Данный микроконтроллер имеет 128 кБайт внутрисистемно программируемой флэш-памяти программ, 4096 байт внутреннего статического ОЗУ данных и 4 кБайт ЭСППЗУ для энергонезависимого хранения данных. Тактовая частота микроконтроллера равна 16 МГц и определяется внутренним кварцевым генератором. Потребляемый ток равен 24 мА, при напряжении питания 5 В и тактовой частоте 16 МГц.

Принципиальная электрическая схема ячейки периферийного обородувония представлена на рисунке 1.1. Микроконтроллер включен по рекомендуемой производителем схеме. Частота кварцевого резонатора ZQ1 равна 16 МГц, емкости конденсаторов С 2, С 3 в соответствии с рекомендациями производителя приняты равными 22 пФ.

При подключении к центральному блоку выносных пультов управления и системы высшего уровня с помощью интерфейса RS232 необходимо обеспечить согласование уровней сигналов микроконтроллера и интерфейса. Для согласования уровней сигналов будем использовать микросхему DD 1-DD 9 приемопередатчика MAX232 в стандартной схеме включения. Производитель рекомендует емкости конденсаторов С 4…C 18 принять равными 1 мкФ.

РЕФЕРАТ

Цель работы: разработка микропроцессорной системы на базе микроконтороллера, пожарной сигнализации на 11 пожарных датчиков. При срабатывании одного из датчиков пожарной сигнализации по радиоканалу поступает кодированный сигнал, чем обеспечивает включение сигнала и указывает номер сработавшего датчика.

Введение

1. Описание объекта и функциональная спецификация

2. Описание ресурсов МК

2.1 Расположение выводов

2.2 Исполнение микроконтроллера

2.3 Особенности микроконтроллеров серии PIC16F Х

2.4 Периферийные особенности, специальные особенности,технология

2.5 Эксплуатационные характеристики

3. Разработка алгоритмов устройства

4. Ассемблирование

5. Описание функциональных узлов МПС и алгоритма их взаимодействия

6. Описание выбора элементной базы и работы принципиальной схемы

Заключение

Список литературы

Приложение А

Приложение Б

Приложение В

Приложение Г

Приложение Д

ВВЕДЕНИЕ

В последнее время в нашей стране, да и, пожалуй, во всём мире стала наиболее актуальна проблема безопасности объекта. Системы электронных пожарных сигнализаций являются одним из главных препятствий на пути пожара.

Современные интегрированные системы безопасности.

В связи с широким использованием современных электронных компонентов и цифровых методов обработки информации происходит существенная "интеллектуализация" технических средств. Эти средства перестают быть просто вспомогательными и приобретают новые свойства. Современные технические средства охраны могут быть использованы в виде полностью интегрированной системы или системы, состоящей из функционально независимых компонентов.

Тенденции развития электронной техники и электротехники на базе микроминиатюризации требуют применения широкой номенклатуры маломощных и малогабаритных устройств и изделий (преобразователей трансформаторов, усилителей, фильтров, стабилизаторов, выпрямителей и так далее), выполненных на новой конструктивной основе ЭРЭ. Достижения науки и техники на современном этапе развития в области электронной техники позволяют значительно уменьшить массогабаритные характеристики рассматриваемых электронных устройств. В настоящее время конструирование РЭА, РЭУ и ЭРЭ характеризуется резким увеличением применения БИС, что также даёт возможность уменьшить объёмы устройств и одновременно улучшить их качественные характеристики, показатели надёжности и долговечности.

Пожарные системы большой ёмкости обычно применяются для обеспечения безопасности крупных предприятий, банков, гостиниц и характеризуется тем, что обслуживают от нескольких сотен до нескольких тысяч датчиков (извещателей). При этом контролировать нужно не только датчики но и различного вида устройства управляющие работой системы.

Микроконтроллеры серии РІС идеально подходят для организации и развития малого и среднего бизнеса в области производства электронной аппаратуры. При минимальных затратах рабочего времени и денежных средств можно легко наладить производство мини-АТС, телефонных блокираторов, "интеллектуальных" датчиков сигнализации, систем контроля доступа, автомобильной электроники и т п. Причем в таких изделиях от 30 до 90 процентов функциональной нагрузки несет на себе программное обеспечение, которое может быть легко модифицировано и приспособлено к нуждам потребителя.

Немаловажное значение имеет возможность защиты кода программы от несанкционированного копирования или изменения. Наличие этой опции эффективно защищает права разработчика и производителя, и особенно важно в Украине, где эти права систематически нарушаются. Для радиолюбителей микроконтроллеры РІС также интересны доступностью цены и простотой в освоении и применении, а также тем, что открывают для них новые, ранее невиданные области творчества. Радиолюбитель освобождается от непроизводительного труда, направленного на подбор и поиск подходящих компонентов, разработку сложной схемотехники реализованной на микросхемах жесткой логики. Значительно упрощается сама конструкция устройства и повышается надежность.

В данном курсовом проекте реализована микропроцессорная система на базе микроконтроллера для управления пожарной сигнализацией. Проект основывается на микроконтроллере PIC16F84А.

1. Описание объекта и функциональная спецификация

Предлагаемое устройство - модулятор и демодулятор на двух микроконтроллерах может работать совместно с передатчиком и приемником с частотной или амплитудной модуляцией. Устройство контролирует ежесекундную додачу импульсов с датчиков пожарной сигнализации. Производится контроль состояния 11 датчиков. При пропадании контрольных импульсов из-за значительного удаления от объекта или выключения передатчика включается звуковой сигнал. После включения тревожного сигнала можно определить, по какому из параметров или датчиков включилась сигнализация.

Функциональная спецификация

Так как устройство содержит две законченные конструкции, разберем каждую конструкции отдельно:

Модулятор

а. 11 пожарных датчиков на размыкание

а. к модулятору передатчика

b. включение несущей

3. Функции

а. сбор информации от пожарных датчиков (извещателей)

b. включение несущей передатчика

с. передача сигналов на модулятор передатчика

d. обработка временных характеристик работы устройства и передача в частотном виде

Демодулятор

а. с компаратора приемника

b. кнопка запуска (включение питания)

а. звуковой излучатель

b. семисегментный индикатор

3. Функции

а. прием управляющих сигналов с компаратора приемника

b. обработка полученной информации

c. подача звукового сигнала «Тревога» на звуковой излучатель

d. вывод информации на семисегментный индикатор, указывающий на объект срабатывания сигнализации и работоспособности устройства


2. Описание ресурсов МК

2.1 Расположение выводов

Расположение выводов микроконтроллера РIС16F84Aизображено на рис. 1.

Рис. 1 -Расположение выводов микроконтроллера РIС16F84A

2.2 Исполнение микроконтроллера

Микроконтроллер выпускается в двух видах корпусов.

Расположение выводов и конструктивные размеры различных корпусов приведены на Рис. 2 и Рис.3.


Рис. 2 - Конструктивные размеры микроконтроллера РIС16F84A(исполнение 1)


Рис. 3 - Конструктивные размеры микроконтроллера РIС16F84A(исполнение 2)

2.3 Особенности микроконтроллеров серии PIC16F

Особенности CPU Высокой Производительности RISC:

Только 35 единых команд операции над словами для узнавания

Весь единый цикл инструкций за исключением программы ветви, которые являются два-циклом

Действие скорости: DC - 20 отмечающего время входа Mгц DC - 200 цикла инструкции ns

1024 слова памяти программы

68 байтов Оперативной ПАМЯТИ Данных

64 байта Данных EEPROM

14-разрядные широкие команды

8-разрядные широкие байты данных

15 Специальных Аппаратных записей Функции

Восьми-горизонтальный глубокий аппаратный стек

Направьте, косвенные и относительные способы адресации

Четыре источника прерывания:

Внешняя иголка RB0/INT

Избыток таймера TMR0

PORTB<7:4> включенное изменение прерывания

Запись данных EEPROM завершить

2.4 Периферийные особенности, специальные особенности,технология

Периферийные Особенности

13 входов I/O с индивидуальным контролем направления

Высокая текущая сточный выход/источник для прямого выхода

25 max сточного выхода mA. за направление

25 max источника mA. за направление

TMR0: 8-разрядный таймер/счетчик с 8-куском программируемый prescaler

Специальные Особенности Microcontroller :

10,000 стереть/написать Увеличенную ВСПЫШКУ циклов

Типичная память программы

10,000,000 типично стереть/написать циклы EEPROM

Типичная память данных

Сдерживание Данных EEPROM > 40 лет

Включенная длина окружности Серийный Programming™ (ICSP™) – через два входа

Энергетический Включенный Reset (POR), Энергетический Верхний Таймер (PWRT)

Таймер Старта Осциллятора (OST)

Таймер (WDT) watchdog с собственным включенным Осколком RC

Осциллятор для надежного действия

Защита кода

Мощность, сохранение метода СНА

Выбираемые варианты осциллятора

CMOS Увеличенный FLASH/EEPROM

Технология:

Низкая мощность, технология большой скорости

Полностью неподвижный проект

Повсюду ряд операционного напряжения:

Коммерчески: 2.0V 5.5V

Индустриально: 2.0V 5.5V

Низкое энергетическое потребление:

- < 2 mA типично @ 5V, 4 мгц

15 ???типично @ 2V, 32 kHz

- < 0.5 типичных текущих резервирования?????2V

2.5 Эксплуатационные характеристики

Температура окружающей среды под bias-55°C +125°C

Температура хранения -65°C +150°C

Напряжение на любой входе относительно VSS (кроме того VDD, MCLR, и RA4) -0.3V (VDD + 0.3V)

Напряжение на VDD относительно VSS -0.3 +7.5V

Напряжение на MCLR относительно VSS(1) . -0.3 +14V

Напряжение на RA4 относительно VSS -0.3 к +8.5V

Полное энергетическое потребление(2) .800 mW

Максимальный ток вне входа. 150 mA

Максимальный ток на входе VDD100 mA

Входной текущий зажим, IIK (VI < 0 или VI > VDD)?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? ??20 mA