Finding x through the discriminant. Methods for solving incomplete quadratic equations. What does it mean if the discriminant is zero \ Formula of the roots of a quadratic equation if the discriminant is zero


We continue to study the topic solution of equations". We have already got acquainted with linear equations and now we are going to get acquainted with quadratic equations.

First, we will discuss what a quadratic equation is, how it is written in general form, and give related definitions. After that, using examples, we will analyze in detail how incomplete quadratic equations are solved. Next, let's move on to solving complete equations, get the formula for the roots, get acquainted with the discriminant of a quadratic equation, and consider solutions to typical examples. Finally, we trace the connections between roots and coefficients.

Page navigation.

What is a quadratic equation? Their types

First you need to clearly understand what a quadratic equation is. Therefore, it is logical to start talking about quadratic equations with the definition of a quadratic equation, as well as definitions related to it. After that, you can consider the main types of quadratic equations: reduced and non-reduced, as well as complete and incomplete equations.

Definition and examples of quadratic equations

Definition.

Quadratic equation is an equation of the form a x 2 +b x+c=0, where x is a variable, a , b and c are some numbers, and a is different from zero.

Let's say right away that quadratic equations are often called equations of the second degree. This is because the quadratic equation is algebraic equation second degree.

The sounded definition allows us to give examples of quadratic equations. So 2 x 2 +6 x+1=0, 0.2 x 2 +2.5 x+0.03=0, etc. are quadratic equations.

Definition.

Numbers a , b and c are called coefficients of the quadratic equation a x 2 + b x + c \u003d 0, and the coefficient a is called the first, or senior, or coefficient at x 2, b is the second coefficient, or coefficient at x, and c is a free member.

For example, let's take a quadratic equation of the form 5 x 2 −2 x−3=0, here the leading coefficient is 5, the second coefficient is −2, and the free term is −3. Note that when the coefficients b and/or c are negative, as in the example just given, the short form of the quadratic equation of the form 5 x 2 −2 x−3=0 is used, not 5 x 2 +(−2 )x+(−3)=0 .

It is worth noting that when the coefficients a and / or b are equal to 1 or −1, then they are usually not explicitly present in the notation of the quadratic equation, which is due to the peculiarities of the notation of such . For example, in the quadratic equation y 2 −y+3=0, the leading coefficient is one, and the coefficient at y is −1.

Reduced and non-reduced quadratic equations

Depending on the value of the leading coefficient, reduced and non-reduced quadratic equations are distinguished. Let us give the corresponding definitions.

Definition.

A quadratic equation in which the leading coefficient is 1 is called reduced quadratic equation. Otherwise, the quadratic equation is unreduced.

According to this definition, the quadratic equations x 2 −3 x+1=0 , x 2 −x−2/3=0, etc. - reduced, in each of them the first coefficient is equal to one. And 5 x 2 −x−1=0 , etc. - unreduced quadratic equations, their leading coefficients are different from 1 .

From any non-reduced quadratic equation, by dividing both of its parts by the leading coefficient, you can go to the reduced one. This action is an equivalent transformation, that is, the reduced quadratic equation obtained in this way has the same roots as the original non-reduced quadratic equation, or, like it, has no roots.

Let's take an example of how the transition from an unreduced quadratic equation to a reduced one is performed.

Example.

From the equation 3 x 2 +12 x−7=0, go to the corresponding reduced quadratic equation.

Decision.

It is enough for us to perform the division of both parts of the original equation by the leading coefficient 3, it is non-zero, so we can perform this action. We have (3 x 2 +12 x−7):3=0:3 , which is the same as (3 x 2):3+(12 x):3−7:3=0 , and so on (3:3) x 2 +(12:3) x−7:3=0 , whence . So we got the reduced quadratic equation, which is equivalent to the original one.

Answer:

Complete and incomplete quadratic equations

There is a condition a≠0 in the definition of a quadratic equation. This condition is necessary in order for the equation a x 2 +b x+c=0 to be exactly square, since with a=0 it actually becomes a linear equation of the form b x+c=0 .

As for the coefficients b and c, they can be equal to zero, both separately and together. In these cases, the quadratic equation is called incomplete.

Definition.

The quadratic equation a x 2 +b x+c=0 is called incomplete, if at least one of the coefficients b , c is equal to zero.

In its turn

Definition.

Complete quadratic equation is an equation in which all coefficients are different from zero.

These names are not given by chance. This will become clear from the following discussion.

If the coefficient b is equal to zero, then the quadratic equation takes the form a x 2 +0 x+c=0 , and it is equivalent to the equation a x 2 +c=0 . If c=0 , that is, the quadratic equation has the form a x 2 +b x+0=0 , then it can be rewritten as a x 2 +b x=0 . And with b=0 and c=0 we get the quadratic equation a·x 2 =0. The resulting equations differ from the full quadratic equation in that their left-hand sides do not contain either a term with the variable x, or a free term, or both. Hence their name - incomplete quadratic equations.

So the equations x 2 +x+1=0 and −2 x 2 −5 x+0,2=0 are examples of complete quadratic equations, and x 2 =0, −2 x 2 =0, 5 x 2 +3=0 , −x 2 −5 x=0 are incomplete quadratic equations.

Solving incomplete quadratic equations

It follows from the information of the previous paragraph that there is three kinds of incomplete quadratic equations:

  • a x 2 =0 , the coefficients b=0 and c=0 correspond to it;
  • a x 2 +c=0 when b=0 ;
  • and a x 2 +b x=0 when c=0 .

Let us analyze in order how the incomplete quadratic equations of each of these types are solved.

a x 2 \u003d 0

Let's start by solving incomplete quadratic equations in which the coefficients b and c are equal to zero, that is, with equations of the form a x 2 =0. The equation a·x 2 =0 is equivalent to the equation x 2 =0, which is obtained from the original by dividing its both parts by a non-zero number a. Obviously, the root of the equation x 2 \u003d 0 is zero, since 0 2 \u003d 0. This equation has no other roots, which is explained, indeed, for any non-zero number p, the inequality p 2 >0 takes place, which implies that for p≠0, the equality p 2 =0 is never achieved.

So, the incomplete quadratic equation a x 2 \u003d 0 has a single root x \u003d 0.

As an example, we give the solution of an incomplete quadratic equation −4·x 2 =0. It is equivalent to the equation x 2 \u003d 0, its only root is x \u003d 0, therefore, the original equation has a single root zero.

A short solution in this case can be issued as follows:
−4 x 2 \u003d 0,
x 2 \u003d 0,
x=0 .

a x 2 +c=0

Now consider how incomplete quadratic equations are solved, in which the coefficient b is equal to zero, and c≠0, that is, equations of the form a x 2 +c=0. We know that the transfer of a term from one side of the equation to the other with the opposite sign, as well as the division of both sides of the equation by a non-zero number, give an equivalent equation. Therefore, the following equivalent transformations of the incomplete quadratic equation a x 2 +c=0 can be carried out:

  • move c to the right side, which gives the equation a x 2 =−c,
  • and divide both its parts by a , we get .

The resulting equation allows us to draw conclusions about its roots. Depending on the values ​​of a and c, the value of the expression can be negative (for example, if a=1 and c=2 , then ) or positive, (for example, if a=−2 and c=6 , then ), it is not equal to zero , because by condition c≠0 . We will separately analyze the cases and .

If , then the equation has no roots. This statement follows from the fact that the square of any number is a non-negative number. It follows from this that when , then for any number p the equality cannot be true.

If , then the situation with the roots of the equation is different. In this case, if we recall about, then the root of the equation immediately becomes obvious, it is the number, since. It is easy to guess that the number is also the root of the equation , indeed, . This equation has no other roots, which can be shown, for example, by contradiction. Let's do it.

Let's denote the just voiced roots of the equation as x 1 and −x 1 . Suppose that the equation has another root x 2 different from the indicated roots x 1 and −x 1 . It is known that substitution into the equation instead of x of its roots turns the equation into a true numerical equality. For x 1 and −x 1 we have , and for x 2 we have . The properties of numerical equalities allow us to perform term-by-term subtraction of true numerical equalities, so subtracting the corresponding parts of the equalities gives x 1 2 − x 2 2 =0. The properties of operations with numbers allow us to rewrite the resulting equality as (x 1 − x 2)·(x 1 + x 2)=0 . We know that the product of two numbers is equal to zero if and only if at least one of them is equal to zero. Therefore, it follows from the obtained equality that x 1 −x 2 =0 and/or x 1 +x 2 =0 , which is the same, x 2 =x 1 and/or x 2 = −x 1 . So we have come to a contradiction, since at the beginning we said that the root of the equation x 2 is different from x 1 and −x 1 . This proves that the equation has no other roots than and .

Let's summarize the information in this paragraph. The incomplete quadratic equation a x 2 +c=0 is equivalent to the equation , which

  • has no roots if ,
  • has two roots and if .

Consider examples of solving incomplete quadratic equations of the form a·x 2 +c=0 .

Let's start with the quadratic equation 9 x 2 +7=0 . After transferring the free term to the right side of the equation, it will take the form 9·x 2 =−7. Dividing both sides of the resulting equation by 9 , we arrive at . Since a negative number is obtained on the right side, this equation has no roots, therefore, the original incomplete quadratic equation 9 x 2 +7=0 has no roots.

Let's solve one more incomplete quadratic equation −x 2 +9=0. We transfer the nine to the right side: -x 2 \u003d -9. Now we divide both parts by −1, we get x 2 =9. The right side contains a positive number, from which we conclude that or . After we write down the final answer: the incomplete quadratic equation −x 2 +9=0 has two roots x=3 or x=−3.

a x 2 +b x=0

It remains to deal with the solution of the last type of incomplete quadratic equations for c=0 . Incomplete quadratic equations of the form a x 2 +b x=0 allows you to solve factorization method. Obviously, we can, located on the left side of the equation, for which it is enough to take the common factor x out of brackets. This allows us to move from the original incomplete quadratic equation to an equivalent equation of the form x·(a·x+b)=0 . And this equation is equivalent to the set of two equations x=0 and a x+b=0 , the last of which is linear and has a root x=−b/a .

So, the incomplete quadratic equation a x 2 +b x=0 has two roots x=0 and x=−b/a.

To consolidate the material, we will analyze the solution of a specific example.

Example.

Solve the equation.

Decision.

We take x out of brackets, this gives the equation. It is equivalent to two equations x=0 and . We solve the resulting linear equation: , and after dividing the mixed number by an ordinary fraction, we find . Therefore, the roots of the original equation are x=0 and .

After getting the necessary practice, the solutions of such equations can be written briefly:

Answer:

x=0 , .

Discriminant, formula of the roots of a quadratic equation

To solve quadratic equations, there is a root formula. Let's write down the formula of the roots of the quadratic equation: , where D=b 2 −4 a c- so-called discriminant of a quadratic equation. The notation essentially means that .

It is useful to know how the root formula was obtained, and how it is applied in finding the roots of quadratic equations. Let's deal with this.

Derivation of the formula of the roots of a quadratic equation

Let us need to solve the quadratic equation a·x 2 +b·x+c=0 . Let's perform some equivalent transformations:

  • We can divide both parts of this equation by a non-zero number a, as a result we get the reduced quadratic equation.
  • Now select a full square on its left side: . After that, the equation will take the form .
  • At this stage, it is possible to carry out the transfer of the last two terms to the right side with the opposite sign, we have .
  • And let's also transform the expression on the right side: .

As a result, we arrive at the equation , which is equivalent to the original quadratic equation a·x 2 +b·x+c=0 .

We have already solved equations similar in form in the previous paragraphs when we analyzed . This allows us to draw the following conclusions regarding the roots of the equation:

  • if , then the equation has no real solutions;
  • if , then the equation has the form , therefore, , from which its only root is visible;
  • if , then or , which is the same as or , that is, the equation has two roots.

Thus, the presence or absence of the roots of the equation, and hence the original quadratic equation, depends on the sign of the expression on the right side. In turn, the sign of this expression is determined by the sign of the numerator, since the denominator 4 a 2 is always positive, that is, the sign of the expression b 2 −4 a c . This expression b 2 −4 a c is called discriminant of a quadratic equation and marked with the letter D. From here, the essence of the discriminant is clear - by its value and sign, it is concluded whether the quadratic equation has real roots, and if so, what is their number - one or two.

We return to the equation , rewrite it using the notation of the discriminant: . And we conclude:

  • if D<0 , то это уравнение не имеет действительных корней;
  • if D=0, then this equation has a single root;
  • finally, if D>0, then the equation has two roots or , which can be rewritten in the form or , and after expanding and reducing the fractions to a common denominator, we get .

So we derived the formulas for the roots of the quadratic equation, they look like , where the discriminant D is calculated by the formula D=b 2 −4 a c .

With their help, with a positive discriminant, you can calculate both real roots of a quadratic equation. When the discriminant is equal to zero, both formulas give the same root value corresponding to the only solution of the quadratic equation. And with a negative discriminant, when trying to use the formula for the roots of a quadratic equation, we are faced with extracting the square root from a negative number, which takes us beyond the scope of the school curriculum. With a negative discriminant, the quadratic equation has no real roots, but has a pair complex conjugate roots, which can be found using the same root formulas we obtained.

Algorithm for solving quadratic equations using root formulas

In practice, when solving a quadratic equation, you can immediately use the root formula, with which to calculate their values. But this is more about finding complex roots.

However, in a school algebra course, we usually talk not about complex, but about real roots of a quadratic equation. In this case, it is advisable to first find the discriminant before using the formulas for the roots of the quadratic equation, make sure that it is non-negative (otherwise, we can conclude that the equation has no real roots), and after that calculate the values ​​of the roots.

The above reasoning allows us to write algorithm for solving a quadratic equation. To solve the quadratic equation a x 2 + b x + c \u003d 0, you need:

  • using the discriminant formula D=b 2 −4 a c calculate its value;
  • conclude that the quadratic equation has no real roots if the discriminant is negative;
  • calculate the only root of the equation using the formula if D=0 ;
  • find two real roots of a quadratic equation using the root formula if the discriminant is positive.

Here we only note that if the discriminant is equal to zero, the formula can also be used, it will give the same value as .

You can move on to examples of applying the algorithm for solving quadratic equations.

Examples of solving quadratic equations

Consider solutions of three quadratic equations with positive, negative, and zero discriminant. Having dealt with their solution, by analogy it will be possible to solve any other quadratic equation. Let's start.

Example.

Find the roots of the equation x 2 +2 x−6=0 .

Decision.

In this case, we have the following coefficients of the quadratic equation: a=1 , b=2 and c=−6 . According to the algorithm, you first need to calculate the discriminant, for this we substitute the indicated a, b and c into the discriminant formula, we have D=b 2 −4 a c=2 2 −4 1 (−6)=4+24=28. Since 28>0, that is, the discriminant is greater than zero, the quadratic equation has two real roots. Let's find them by the formula of roots , we get , here we can simplify the expressions obtained by doing factoring out the sign of the root followed by fraction reduction:

Answer:

Let's move on to the next typical example.

Example.

Solve the quadratic equation −4 x 2 +28 x−49=0 .

Decision.

We start by finding the discriminant: D=28 2 −4 (−4) (−49)=784−784=0. Therefore, this quadratic equation has a single root, which we find as , that is,

Answer:

x=3.5 .

It remains to consider the solution of quadratic equations with negative discriminant.

Example.

Solve the equation 5 y 2 +6 y+2=0 .

Decision.

Here are the coefficients of the quadratic equation: a=5 , b=6 and c=2 . Substituting these values ​​into the discriminant formula, we have D=b 2 −4 a c=6 2 −4 5 2=36−40=−4. The discriminant is negative, therefore, this quadratic equation has no real roots.

If you need to specify complex roots, then we use the well-known formula for the roots of the quadratic equation, and perform operations with complex numbers:

Answer:

there are no real roots, the complex roots are: .

Once again, we note that if the discriminant of the quadratic equation is negative, then the school usually immediately writes down the answer, in which they indicate that there are no real roots, and they do not find complex roots.

Root formula for even second coefficients

The formula for the roots of a quadratic equation , where D=b 2 −4 a c allows you to get a more compact formula that allows you to solve quadratic equations with an even coefficient at x (or simply with a coefficient that looks like 2 n, for example, or 14 ln5=2 7 ln5 ). Let's take her out.

Let's say we need to solve a quadratic equation of the form a x 2 +2 n x + c=0 . Let's find its roots using the formula known to us. To do this, we calculate the discriminant D=(2 n) 2 −4 a c=4 n 2 −4 a c=4 (n 2 −a c), and then we use the root formula:

Denote the expression n 2 −a c as D 1 (sometimes it is denoted D "). Then the formula for the roots of the considered quadratic equation with the second coefficient 2 n takes the form , where D 1 =n 2 −a c .

It is easy to see that D=4·D 1 , or D 1 =D/4 . In other words, D 1 is the fourth part of the discriminant. It is clear that the sign of D 1 is the same as the sign of D . That is, the sign D 1 is also an indicator of the presence or absence of the roots of the quadratic equation.

So, to solve a quadratic equation with the second coefficient 2 n, you need

  • Calculate D 1 =n 2 −a·c ;
  • If D 1<0 , то сделать вывод, что действительных корней нет;
  • If D 1 =0, then calculate the only root of the equation using the formula;
  • If D 1 >0, then find two real roots using the formula.

Consider the solution of the example using the root formula obtained in this paragraph.

Example.

Solve the quadratic equation 5 x 2 −6 x−32=0 .

Decision.

The second coefficient of this equation can be represented as 2·(−3) . That is, you can rewrite the original quadratic equation in the form 5 x 2 +2 (−3) x−32=0 , here a=5 , n=−3 and c=−32 , and calculate the fourth part of the discriminant: D 1 =n 2 −a c=(−3) 2 −5 (−32)=9+160=169. Since its value is positive, the equation has two real roots. We find them using the corresponding root formula:

Note that it was possible to use the usual formula for the roots of a quadratic equation, but in this case, more computational work would have to be done.

Answer:

Simplification of the form of quadratic equations

Sometimes, before embarking on the calculation of the roots of a quadratic equation using formulas, it does not hurt to ask the question: “Is it possible to simplify the form of this equation”? Agree that in terms of calculations it will be easier to solve the quadratic equation 11 x 2 −4 x −6=0 than 1100 x 2 −400 x−600=0 .

Usually, a simplification of the form of a quadratic equation is achieved by multiplying or dividing both sides of it by some number. For example, in the previous paragraph, we managed to achieve a simplification of the equation 1100 x 2 −400 x −600=0 by dividing both sides by 100 .

A similar transformation is carried out with quadratic equations, the coefficients of which are not . In this case, both parts of the equation are usually divided by the absolute values ​​of its coefficients. For example, let's take the quadratic equation 12 x 2 −42 x+48=0. absolute values ​​of its coefficients: gcd(12, 42, 48)= gcd(gcd(12, 42), 48)= gcd(6, 48)=6 . Dividing both parts of the original quadratic equation by 6 , we arrive at the equivalent quadratic equation 2 x 2 −7 x+8=0 .

And the multiplication of both parts of the quadratic equation is usually done to get rid of fractional coefficients. In this case, the multiplication is carried out on the denominators of its coefficients. For example, if both parts of a quadratic equation are multiplied by LCM(6, 3, 1)=6 , then it will take a simpler form x 2 +4 x−18=0 .

In conclusion of this paragraph, we note that almost always get rid of the minus at the highest coefficient of the quadratic equation by changing the signs of all terms, which corresponds to multiplying (or dividing) both parts by −1. For example, usually from the quadratic equation −2·x 2 −3·x+7=0 go to the solution 2·x 2 +3·x−7=0 .

Relationship between roots and coefficients of a quadratic equation

The formula for the roots of a quadratic equation expresses the roots of an equation in terms of its coefficients. Based on the formula of the roots, you can get other relationships between the roots and coefficients.

The most well-known and applicable formulas from the Vieta theorem of the form and . In particular, for the given quadratic equation, the sum of the roots is equal to the second coefficient with the opposite sign, and the product of the roots is the free term. For example, by the form of the quadratic equation 3 x 2 −7 x+22=0, we can immediately say that the sum of its roots is 7/3, and the product of the roots is 22/3.

Using the already written formulas, you can get a number of other relationships between the roots and coefficients of the quadratic equation. For example, you can express the sum of the squares of the roots of a quadratic equation in terms of its coefficients: .

Bibliography.

  • Algebra: textbook for 8 cells. general education institutions / [Yu. N. Makarychev, N. G. Mindyuk, K. I. Neshkov, S. B. Suvorova]; ed. S. A. Telyakovsky. - 16th ed. - M. : Education, 2008. - 271 p. : ill. - ISBN 978-5-09-019243-9.
  • Mordkovich A. G. Algebra. 8th grade. At 2 pm Part 1. A textbook for students of educational institutions / A. G. Mordkovich. - 11th ed., erased. - M.: Mnemozina, 2009. - 215 p.: ill. ISBN 978-5-346-01155-2.

Formulas for the roots of a quadratic equation. The cases of real, multiple and complex roots are considered. Factorization of a square trinomial. Geometric interpretation. Examples of determining roots and factorization.

Basic formulas

Consider the quadratic equation:
(1) .
The roots of a quadratic equation(1) are determined by the formulas:
; .
These formulas can be combined like this:
.
When the roots of the quadratic equation are known, then the polynomial of the second degree can be represented as a product of factors (factored):
.

Further, we assume that are real numbers.
Consider discriminant of a quadratic equation:
.
If the discriminant is positive, then the quadratic equation (1) has two different real roots:
; .
Then the factorization of the square trinomial has the form:
.
If the discriminant is zero, then the quadratic equation (1) has two multiple (equal) real roots:
.
Factorization:
.
If the discriminant is negative, then the quadratic equation (1) has two complex conjugate roots:
;
.
Here is the imaginary unit, ;
and are the real and imaginary parts of the roots:
; .
Then

.

Graphic interpretation

If we graph the function
,
which is a parabola, then the points of intersection of the graph with the axis will be the roots of the equation
.
When , the graph intersects the abscissa axis (axis) at two points.
When , the graph touches the x-axis at one point.
When , the graph does not cross the x-axis.

Below are examples of such graphs.

Useful Formulas Related to Quadratic Equation

(f.1) ;
(f.2) ;
(f.3) .

Derivation of the formula for the roots of a quadratic equation

We perform transformations and apply formulas (f.1) and (f.3):




,
where
; .

So, we got the formula for the polynomial of the second degree in the form:
.
From this it can be seen that the equation

performed at
and .
That is, and are the roots of the quadratic equation
.

Examples of determining the roots of a quadratic equation

Example 1


(1.1) .

Decision


.
Comparing with our equation (1.1), we find the values ​​of the coefficients:
.
Finding the discriminant:
.
Since the discriminant is positive, the equation has two real roots:
;
;
.

From here we obtain the decomposition of the square trinomial into factors:

.

Graph of the function y = 2 x 2 + 7 x + 3 crosses the x-axis at two points.

Let's plot the function
.
The graph of this function is a parabola. It crosses the x-axis (axis) at two points:
and .
These points are the roots of the original equation (1.1).

Answer

;
;
.

Example 2

Find the roots of a quadratic equation:
(2.1) .

Decision

We write the quadratic equation in general form:
.
Comparing with the original equation (2.1), we find the values ​​of the coefficients:
.
Finding the discriminant:
.
Since the discriminant is zero, the equation has two multiple (equal) roots:
;
.

Then the factorization of the trinomial has the form:
.

Graph of the function y = x 2 - 4 x + 4 touches the x-axis at one point.

Let's plot the function
.
The graph of this function is a parabola. It touches the x-axis (axis) at one point:
.
This point is the root of the original equation (2.1). Since this root is factored twice:
,
then such a root is called a multiple. That is, they consider that there are two equal roots:
.

Answer

;
.

Example 3

Find the roots of a quadratic equation:
(3.1) .

Decision

We write the quadratic equation in general form:
(1) .
Let us rewrite the original equation (3.1):
.
Comparing with (1), we find the values ​​of the coefficients:
.
Finding the discriminant:
.
The discriminant is negative, . Therefore, there are no real roots.

You can find complex roots:
;
;
.

Then


.

The graph of the function does not cross the x-axis. There are no real roots.

Let's plot the function
.
The graph of this function is a parabola. It does not cross the abscissa (axis). Therefore, there are no real roots.

Answer

There are no real roots. Complex roots:
;
;
.

In modern society, the ability to operate with equations containing a squared variable can be useful in many areas of activity and is widely used in practice in scientific and technical developments. This can be evidenced by the design of sea and river vessels, aircraft and missiles. With the help of such calculations, the trajectories of the movement of various bodies, including space objects, are determined. Examples with the solution of quadratic equations are used not only in economic forecasting, in the design and construction of buildings, but also in the most ordinary everyday circumstances. They may be needed on camping trips, at sports events, in stores when shopping and in other very common situations.

Let's break the expression into component factors

The degree of an equation is determined by the maximum value of the degree of the variable that the given expression contains. If it is equal to 2, then such an equation is called a quadratic equation.

If we speak in the language of formulas, then these expressions, no matter how they look, can always be brought to the form when the left side of the expression consists of three terms. Among them: ax 2 (that is, a variable squared with its coefficient), bx (an unknown without a square with its coefficient) and c (free component, that is, an ordinary number). All this on the right side is equal to 0. In the case when such a polynomial does not have one of its constituent terms, with the exception of ax 2, it is called an incomplete quadratic equation. Examples with the solution of such problems, in which the value of the variables is not difficult to find, should be considered first.

If the expression looks in such a way that there are two terms on the right side of the expression, more precisely ax 2 and bx, it is easiest to find x by bracketing the variable. Now our equation will look like this: x(ax+b). Further, it becomes obvious that either x=0, or the problem is reduced to finding a variable from the following expression: ax+b=0. This is dictated by one of the properties of multiplication. The rule says that the product of two factors results in 0 only if one of them is zero.

Example

x=0 or 8x - 3 = 0

As a result, we get two roots of the equation: 0 and 0.375.

Equations of this kind can describe the movement of bodies under the action of gravity, which began to move from a certain point, taken as the origin. Here the mathematical notation takes the following form: y = v 0 t + gt 2 /2. By substituting the necessary values, equating the right side to 0 and finding possible unknowns, you can find out the time elapsed from the moment the body rises to the moment it falls, as well as many other quantities. But we will talk about this later.

Factoring an Expression

The rule described above makes it possible to solve these problems in more complex cases. Consider examples with the solution of quadratic equations of this type.

X2 - 33x + 200 = 0

This square trinomial is complete. First, we transform the expression and decompose it into factors. There are two of them: (x-8) and (x-25) = 0. As a result, we have two roots 8 and 25.

Examples with the solution of quadratic equations in grade 9 allow this method to find a variable in expressions not only of the second, but even of the third and fourth orders.

For example: 2x 3 + 2x 2 - 18x - 18 = 0. When factoring the right side into factors with a variable, there are three of them, that is, (x + 1), (x-3) and (x + 3).

As a result, it becomes obvious that this equation has three roots: -3; -one; 3.

Extracting the square root

Another case of an incomplete second order equation is an expression written in the language of letters in such a way that the right side is built from the components ax 2 and c. Here, to obtain the value of the variable, the free term is transferred to the right side, and after that, the square root is extracted from both sides of the equality. It should be noted that in this case there are usually two roots of the equation. The only exceptions are equalities that do not contain the term c at all, where the variable is equal to zero, as well as variants of expressions when the right side turns out to be negative. In the latter case, there are no solutions at all, since the above actions cannot be performed with roots. Examples of solutions to quadratic equations of this type should be considered.

In this case, the roots of the equation will be the numbers -4 and 4.

Calculation of the area of ​​land

The need for this kind of calculations appeared in ancient times, because the development of mathematics in those distant times was largely due to the need to determine the areas and perimeters of land plots with the greatest accuracy.

We should also consider examples with the solution of quadratic equations compiled on the basis of problems of this kind.

So, let's say there is a rectangular piece of land, the length of which is 16 meters more than the width. You should find the length, width and perimeter of the site, if it is known that its area is 612 m 2.

Getting down to business, at first we will make the necessary equation. Let's denote the width of the section as x, then its length will be (x + 16). It follows from what has been written that the area is determined by the expression x (x + 16), which, according to the condition of our problem, is 612. This means that x (x + 16) \u003d 612.

The solution of complete quadratic equations, and this expression is just that, cannot be done in the same way. Why? Although the left side of it still contains two factors, the product of them is not equal to 0 at all, so other methods are used here.

Discriminant

First of all, we will make the necessary transformations, then the appearance of this expression will look like this: x 2 + 16x - 612 = 0. This means that we have received an expression in the form corresponding to the previously specified standard, where a=1, b=16, c= -612.

This can be an example of solving quadratic equations through the discriminant. Here the necessary calculations are made according to the scheme: D = b 2 - 4ac. This auxiliary value not only makes it possible to find the desired values ​​in the second-order equation, it determines the number of possible options. In case D>0, there are two of them; for D=0 there is one root. In case D<0, никаких шансов для решения у уравнения вообще не имеется.

About roots and their formula

In our case, the discriminant is: 256 - 4(-612) = 2704. This indicates that our problem has an answer. If you know, to, the solution of quadratic equations must be continued using the formula below. It allows you to calculate the roots.

This means that in the presented case: x 1 =18, x 2 =-34. The second option in this dilemma cannot be a solution, because the size of the land plot cannot be measured in negative values, which means that x (that is, the width of the plot) is 18 m. From here we calculate the length: 18+16=34, and the perimeter 2(34+ 18) = 104 (m 2).

Examples and tasks

We continue the study of quadratic equations. Examples and a detailed solution of several of them will be given below.

1) 15x2 + 20x + 5 = 12x2 + 27x + 1

Let's transfer everything to the left side of the equality, make a transformation, that is, we get the form of the equation, which is usually called the standard one, and equate it to zero.

15x 2 + 20x + 5 - 12x 2 - 27x - 1 = 0

Having added similar ones, we determine the discriminant: D \u003d 49 - 48 \u003d 1. So our equation will have two roots. We calculate them according to the above formula, which means that the first of them will be equal to 4/3, and the second 1.

2) Now we will reveal riddles of a different kind.

Let's find out if there are roots x 2 - 4x + 5 = 1 here at all? To obtain an exhaustive answer, we bring the polynomial to the corresponding familiar form and calculate the discriminant. In this example, it is not necessary to solve the quadratic equation, because the essence of the problem is not at all in this. In this case, D \u003d 16 - 20 \u003d -4, which means that there really are no roots.

Vieta's theorem

It is convenient to solve quadratic equations through the above formulas and the discriminant, when the square root is extracted from the value of the latter. But this does not always happen. However, there are many ways to get the values ​​of variables in this case. Example: solving quadratic equations using Vieta's theorem. It is named after a man who lived in 16th-century France and had a brilliant career thanks to his mathematical talent and connections at court. His portrait can be seen in the article.

The pattern that the famous Frenchman noticed was as follows. He proved that the sum of the roots of the equation is equal to -p=b/a, and their product corresponds to q=c/a.

Now let's look at specific tasks.

3x2 + 21x - 54 = 0

For simplicity, let's transform the expression:

x 2 + 7x - 18 = 0

Using the Vieta theorem, this will give us the following: the sum of the roots is -7, and their product is -18. From here we get that the roots of the equation are the numbers -9 and 2. Having made a check, we will make sure that these values ​​of the variables really fit into the expression.

Graph and Equation of a Parabola

The concepts of a quadratic function and quadratic equations are closely related. Examples of this have already been given previously. Now let's look at some mathematical puzzles in a little more detail. Any equation of the described type can be represented visually. Such a dependence, drawn in the form of a graph, is called a parabola. Its various types are shown in the figure below.

Any parabola has a vertex, that is, a point from which its branches come out. If a>0, they go high to infinity, and when a<0, они рисуются вниз. Простейшим примером подобной зависимости является функция y = x 2 . В данном случае в уравнении x 2 =0 неизвестное может принимать только одно значение, то есть х=0, а значит существует только один корень. Это неудивительно, ведь здесь D=0, потому что a=1, b=0, c=0. Выходит формула корней (точнее одного корня) квадратного уравнения запишется так: x = -b/2a.

Visual representations of functions help to solve any equations, including quadratic ones. This method is called graphic. And the value of the x variable is the abscissa coordinate at the points where the graph line intersects with 0x. The coordinates of the vertex can be found by the formula just given x 0 = -b / 2a. And, substituting the resulting value into the original equation of the function, you can find out y 0, that is, the second coordinate of the parabola vertex belonging to the y-axis.

The intersection of the branches of the parabola with the abscissa axis

There are a lot of examples with the solution of quadratic equations, but there are also general patterns. Let's consider them. It is clear that the intersection of the graph with the 0x axis for a>0 is possible only if y 0 takes negative values. And for a<0 координата у 0 должна быть положительна. Для указанных вариантов D>0. Otherwise D<0. А когда D=0, вершина параболы расположена непосредственно на оси 0х.

From the graph of a parabola, you can also determine the roots. The reverse is also true. That is, if it is not easy to get a visual representation of a quadratic function, you can equate the right side of the expression to 0 and solve the resulting equation. And knowing the points of intersection with the 0x axis, it is easier to plot.

From the history

With the help of equations containing a squared variable, in the old days, not only did mathematical calculations and determined the area of ​​\u200b\u200bgeometric shapes. The ancients needed such calculations for grandiose discoveries in the field of physics and astronomy, as well as for making astrological forecasts.

As modern scientists suggest, the inhabitants of Babylon were among the first to solve quadratic equations. It happened four centuries before the advent of our era. Of course, their calculations were fundamentally different from those currently accepted and turned out to be much more primitive. For example, Mesopotamian mathematicians had no idea about the existence of negative numbers. They were also unfamiliar with other subtleties of those known to any student of our time.

Perhaps even earlier than the scientists of Babylon, the sage from India, Baudhayama, took up the solution of quadratic equations. This happened about eight centuries before the advent of the era of Christ. True, the second-order equations, the methods for solving which he gave, were the simplest. In addition to him, Chinese mathematicians were also interested in similar questions in the old days. In Europe, quadratic equations began to be solved only at the beginning of the 13th century, but later they were used in their work by such great scientists as Newton, Descartes and many others.

Quadratic equations. Discriminant. Solution, examples.

Attention!
There are additional
material in Special Section 555.
For those who strongly "not very..."
And for those who "very much...")

Types of quadratic equations

What is a quadratic equation? What does it look like? In term quadratic equation keyword is "square". It means that in the equation necessarily there must be an x ​​squared. In addition to it, in the equation there may be (or may not be!) Just x (to the first degree) and just a number (free member). And there should not be x's in a degree greater than two.

In mathematical terms, a quadratic equation is an equation of the form:

Here a, b and c- some numbers. b and c- absolutely any, but a- anything but zero. For example:

Here a =1; b = 3; c = -4

Here a =2; b = -0,5; c = 2,2

Here a =-3; b = 6; c = -18

Well, you get the idea...

In these quadratic equations, on the left, there is full set members. x squared with coefficient a, x to the first power with coefficient b and free member of

Such quadratic equations are called complete.

And if b= 0, what will we get? We have X will disappear in the first degree. This happens from multiplying by zero.) It turns out, for example:

5x 2 -25 = 0,

2x 2 -6x=0,

-x 2 +4x=0

Etc. And if both coefficients b and c are equal to zero, then it is even simpler:

2x 2 \u003d 0,

-0.3x 2 \u003d 0

Such equations, where something is missing, are called incomplete quadratic equations. Which is quite logical.) Please note that x squared is present in all equations.

By the way why a can't be zero? And you substitute instead a zero.) The X in the square will disappear! The equation will become linear. And it's done differently...

That's all the main types of quadratic equations. Complete and incomplete.

Solution of quadratic equations.

Solution of complete quadratic equations.

Quadratic equations are easy to solve. According to formulas and clear simple rules. At the first stage, it is necessary to bring the given equation to the standard form, i.e. to the view:

If the equation is already given to you in this form, you do not need to do the first stage.) The main thing is to correctly determine all the coefficients, a, b and c.

The formula for finding the roots of a quadratic equation looks like this:

The expression under the root sign is called discriminant. But more about him below. As you can see, to find x, we use only a, b and c. Those. coefficients from the quadratic equation. Just carefully substitute the values a, b and c into this formula and count. Substitute with your signs! For example, in the equation:

a =1; b = 3; c= -4. Here we write:

Example almost solved:

This is the answer.

Everything is very simple. And what do you think, you can't go wrong? Well, yes, how...

The most common mistakes are confusion with the signs of values a, b and c. Or rather, not with their signs (where is there to get confused?), But with the substitution of negative values ​​​​into the formula for calculating the roots. Here, a detailed record of the formula with specific numbers saves. If there are problems with calculations, so do it!

Suppose we need to solve the following example:

Here a = -6; b = -5; c = -1

Let's say you know that you rarely get answers the first time.

Well, don't be lazy. It will take 30 seconds to write an extra line. And the number of errors will drop sharply. So we write in detail, with all the brackets and signs:

It seems incredibly difficult to paint so carefully. But it only seems. Try it. Well, or choose. Which is better, fast, or right? Besides, I will make you happy. After a while, there will be no need to paint everything so carefully. It will just turn out right. Especially if you apply practical techniques, which are described below. This evil example with a bunch of minuses will be solved easily and without errors!

But, often, quadratic equations look slightly different. For example, like this:

Did you know?) Yes! This is incomplete quadratic equations.

Solution of incomplete quadratic equations.

They can also be solved by the general formula. You just need to correctly figure out what is equal here a, b and c.

Realized? In the first example a = 1; b = -4; a c? It doesn't exist at all! Well, yes, that's right. In mathematics, this means that c = 0 ! That's all. Substitute zero into the formula instead of c, and everything will work out for us. Similarly with the second example. Only zero we don't have here with, a b !

But incomplete quadratic equations can be solved much easier. Without any formulas. Consider the first incomplete equation. What can be done on the left side? You can take the X out of brackets! Let's take it out.

And what from this? And the fact that the product is equal to zero if, and only if any of the factors is equal to zero! Don't believe? Well, then come up with two non-zero numbers that, when multiplied, will give zero!
Does not work? Something...
Therefore, we can confidently write: x 1 = 0, x 2 = 4.

Everything. These will be the roots of our equation. Both fit. When substituting any of them into the original equation, we get the correct identity 0 = 0. As you can see, the solution is much simpler than the general formula. I note, by the way, which X will be the first, and which the second - it is absolutely indifferent. Easy to write in order x 1- whichever is less x 2- that which is more.

The second equation can also be easily solved. We move 9 to the right side. We get:

It remains to extract the root from 9, and that's it. Get:

also two roots . x 1 = -3, x 2 = 3.

This is how all incomplete quadratic equations are solved. Either by taking X out of brackets, or by simply transferring the number to the right, followed by extracting the root.
It is extremely difficult to confuse these methods. Simply because in the first case you will have to extract the root from X, which is somehow incomprehensible, and in the second case there is nothing to take out of brackets ...

Discriminant. Discriminant formula.

Magic word discriminant ! A rare high school student has not heard this word! The phrase “decide through the discriminant” is reassuring and reassuring. Because there is no need to wait for tricks from the discriminant! It is simple and trouble-free to use.) I remind you of the most general formula for solving any quadratic equations:

The expression under the root sign is called the discriminant. The discriminant is usually denoted by the letter D. Discriminant formula:

D = b 2 - 4ac

And what is so special about this expression? Why does it deserve a special name? What meaning of the discriminant? After all -b, or 2a in this formula they don’t specifically name ... Letters and letters.

The point is this. When solving a quadratic equation using this formula, it is possible only three cases.

1. The discriminant is positive. This means that you can extract the root from it. Whether the root is extracted well or badly is another question. It is important what is extracted in principle. Then your quadratic equation has two roots. Two different solutions.

2. The discriminant is zero. Then you have one solution. Since adding or subtracting zero in the numerator does not change anything. Strictly speaking, this is not a single root, but two identical. But, in a simplified version, it is customary to talk about one solution.

3. The discriminant is negative. A negative number does not take the square root. Well, okay. This means there are no solutions.

To be honest, with a simple solution of quadratic equations, the concept of a discriminant is not really required. We substitute the values ​​​​of the coefficients in the formula, and we consider. There everything turns out by itself, and two roots, and one, and not a single one. However, when solving more complex tasks, without knowledge meaning and discriminant formula not enough. Especially - in equations with parameters. Such equations are aerobatics for the GIA and the Unified State Examination!)

So, how to solve quadratic equations through the discriminant you remembered. Or learned, which is also not bad.) You know how to correctly identify a, b and c. Do you know how attentively substitute them into the root formula and attentively count the result. Did you understand that the key word here is - attentively?

Now take note of the practical techniques that dramatically reduce the number of errors. The very ones that are due to inattention ... For which it is then painful and insulting ...

First reception . Do not be lazy before solving a quadratic equation to bring it to a standard form. What does this mean?
Suppose, after any transformations, you get the following equation:

Do not rush to write the formula of the roots! You will almost certainly mix up the odds a, b and c. Build the example correctly. First, x squared, then without a square, then a free member. Like this:

And again, do not rush! The minus before the x squared can upset you a lot. Forgetting it is easy... Get rid of the minus. How? Yes, as taught in the previous topic! We need to multiply the whole equation by -1. We get:

And now you can safely write down the formula for the roots, calculate the discriminant and complete the example. Decide on your own. You should end up with roots 2 and -1.

Second reception. Check your roots! According to Vieta's theorem. Don't worry, I'll explain everything! Checking last thing the equation. Those. the one by which we wrote down the formula of the roots. If (as in this example) the coefficient a = 1, check the roots easily. It is enough to multiply them. You should get a free term, i.e. in our case -2. Pay attention, not 2, but -2! free member with your sign . If it didn’t work out, it means they already messed up somewhere. Look for an error.

If it worked out, you need to fold the roots. Last and final check. Should be a ratio b with opposite sign. In our case -1+2 = +1. A coefficient b, which is before the x, is equal to -1. So, everything is correct!
It is a pity that it is so simple only for examples where x squared is pure, with a coefficient a = 1. But at least check in such equations! There will be fewer mistakes.

Reception third . If your equation has fractional coefficients, get rid of the fractions! Multiply the equation by the common denominator as described in the lesson "How to solve equations? Identity transformations". When working with fractions, errors, for some reason, climb ...

By the way, I promised an evil example with a bunch of minuses to simplify. You are welcome! There he is.

In order not to get confused in the minuses, we multiply the equation by -1. We get:

That's all! Deciding is fun!

So let's recap the topic.

Practical Tips:

1. Before solving, we bring the quadratic equation to the standard form, build it right.

2. If there is a negative coefficient in front of the x in the square, we eliminate it by multiplying the entire equation by -1.

3. If the coefficients are fractional, we eliminate the fractions by multiplying the entire equation by the corresponding factor.

4. If x squared is pure, the coefficient for it is equal to one, the solution can be easily checked by Vieta's theorem. Do it!

Now you can decide.)

Solve Equations:

8x 2 - 6x + 1 = 0

x 2 + 3x + 8 = 0

x 2 - 4x + 4 = 0

(x+1) 2 + x + 1 = (x+1)(x+2)

Answers (in disarray):

x 1 = 0
x 2 = 5

x 1.2 =2

x 1 = 2
x 2 \u003d -0.5

x - any number

x 1 = -3
x 2 = 3

no solutions

x 1 = 0.25
x 2 \u003d 0.5

Does everything fit? Fine! Quadratic equations are not your headache. The first three turned out, but the rest did not? Then the problem is not in quadratic equations. The problem is in identical transformations of equations. Take a look at the link, it's helpful.

Doesn't quite work? Or does it not work at all? Then Section 555 will help you. There, all these examples are sorted by bones. Showing main errors in the solution. Of course, the application of identical transformations in solving various equations is also described. Helps a lot!

If you like this site...

By the way, I have a couple more interesting sites for you.)

You can practice solving examples and find out your level. Testing with instant verification. Learning - with interest!)

you can get acquainted with functions and derivatives.

First level

Quadratic equations. Comprehensive Guide (2019)

In the term "quadratic equation" the key word is "quadratic". This means that the equation must necessarily contain a variable (the same X) in the square, and at the same time there should not be Xs in the third (or greater) degree.

The solution of many equations is reduced to the solution of quadratic equations.

Let's learn to determine that we have a quadratic equation, and not some other.

Example 1

Get rid of the denominator and multiply each term of the equation by

Let's move everything to the left side and arrange the terms in descending order of powers of x

Now we can say with confidence that this equation is quadratic!

Example 2

Multiply the left and right sides by:

This equation, although it was originally in it, is not a square!

Example 3

Let's multiply everything by:

Scary? The fourth and second degrees ... However, if we make a replacement, we will see that we have a simple quadratic equation:

Example 4

It seems to be, but let's take a closer look. Let's move everything to the left side:

You see, it has shrunk - and now it's a simple linear equation!

Now try to determine for yourself which of the following equations are quadratic and which are not:

Examples:

Answers:

  1. square;
  2. square;
  3. not square;
  4. not square;
  5. not square;
  6. square;
  7. not square;
  8. square.

Mathematicians conditionally divide all quadratic equations into the following types:

  • Complete quadratic equations- equations in which the coefficients and, as well as the free term c, are not equal to zero (as in the example). In addition, among the complete quadratic equations, there are given are equations in which the coefficient (the equation from example one is not only complete, but also reduced!)
  • Incomplete quadratic equations- equations in which the coefficient and or free term c are equal to zero:

    They are incomplete because some element is missing from them. But the equation must always contain x squared !!! Otherwise, it will no longer be a quadratic, but some other equation.

Why did they come up with such a division? It would seem that there is an X squared, and okay. Such a division is due to the methods of solution. Let's consider each of them in more detail.

Solving incomplete quadratic equations

First, let's focus on solving incomplete quadratic equations - they are much simpler!

Incomplete quadratic equations are of types:

  1. , in this equation the coefficient is equal.
  2. , in this equation the free term is equal to.
  3. , in this equation the coefficient and the free term are equal.

1. i. Since we know how to take the square root, let's express from this equation

The expression can be either negative or positive. A squared number cannot be negative, because when multiplying two negative or two positive numbers, the result will always be a positive number, so: if, then the equation has no solutions.

And if, then we get two roots. These formulas do not need to be memorized. The main thing is that you should always know and remember that it cannot be less.

Let's try to solve some examples.

Example 5:

Solve the Equation

Now it remains to extract the root from the left and right parts. After all, do you remember how to extract the roots?

Answer:

Never forget about roots with a negative sign!!!

Example 6:

Solve the Equation

Answer:

Example 7:

Solve the Equation

Ouch! The square of a number cannot be negative, which means that the equation

no roots!

For such equations in which there are no roots, mathematicians came up with a special icon - (empty set). And the answer can be written like this:

Answer:

Thus, this quadratic equation has two roots. There are no restrictions here, since we did not extract the root.
Example 8:

Solve the Equation

Let's take the common factor out of brackets:

Thus,

This equation has two roots.

Answer:

The simplest type of incomplete quadratic equations (although they are all simple, right?). Obviously, this equation always has only one root:

Here we will do without examples.

Solving complete quadratic equations

We remind you that the complete quadratic equation is an equation of the form equation where

Solving full quadratic equations is a bit more complicated (just a little bit) than those given.

Remember, any quadratic equation can be solved using the discriminant! Even incomplete.

The rest of the methods will help you do it faster, but if you have problems with quadratic equations, first master the solution using the discriminant.

1. Solving quadratic equations using the discriminant.

Solving quadratic equations in this way is very simple, the main thing is to remember the sequence of actions and a couple of formulas.

If, then the equation has a root. Special attention should be paid to the step. The discriminant () tells us the number of roots of the equation.

  • If, then the formula at the step will be reduced to. Thus, the equation will have only a root.
  • If, then we will not be able to extract the root of the discriminant at the step. This indicates that the equation has no roots.

Let's go back to our equations and look at a few examples.

Example 9:

Solve the Equation

Step 1 skip.

Step 2

Finding the discriminant:

So the equation has two roots.

Step 3

Answer:

Example 10:

Solve the Equation

The equation is in standard form, so Step 1 skip.

Step 2

Finding the discriminant:

So the equation has one root.

Answer:

Example 11:

Solve the Equation

The equation is in standard form, so Step 1 skip.

Step 2

Finding the discriminant:

This means that we will not be able to extract the root from the discriminant. There are no roots of the equation.

Now we know how to write down such answers correctly.

Answer: no roots

2. Solution of quadratic equations using the Vieta theorem.

If you remember, then there is such a type of equations that are called reduced (when the coefficient a is equal to):

Such equations are very easy to solve using Vieta's theorem:

The sum of the roots given quadratic equation is equal, and the product of the roots is equal.

Example 12:

Solve the Equation

This equation is suitable for solution using Vieta's theorem, because .

The sum of the roots of the equation is, i.e. we get the first equation:

And the product is:

Let's create and solve the system:

  • and. The sum is;
  • and. The sum is;
  • and. The amount is equal.

and are the solution of the system:

Answer: ; .

Example 13:

Solve the Equation

Answer:

Example 14:

Solve the Equation

The equation is reduced, which means:

Answer:

QUADRATIC EQUATIONS. MIDDLE LEVEL

What is a quadratic equation?

In other words, a quadratic equation is an equation of the form, where - unknown, - some numbers, moreover.

The number is called the highest or first coefficient quadratic equation, - second coefficient, a - free member.

Why? Because if, the equation will immediately become linear, because will disappear.

In this case, and can be equal to zero. In this stool equation is called incomplete. If all the terms are in place, that is, the equation is complete.

Solutions to various types of quadratic equations

Methods for solving incomplete quadratic equations:

To begin with, we will analyze the methods for solving incomplete quadratic equations - they are simpler.

The following types of equations can be distinguished:

I. , in this equation the coefficient and the free term are equal.

II. , in this equation the coefficient is equal.

III. , in this equation the free term is equal to.

Now consider the solution of each of these subtypes.

Obviously, this equation always has only one root:

A number squared cannot be negative, because when multiplying two negative or two positive numbers, the result will always be a positive number. So:

if, then the equation has no solutions;

if we have two roots

These formulas do not need to be memorized. The main thing to remember is that it cannot be less.

Examples:

Solutions:

Answer:

Never forget about roots with a negative sign!

The square of a number cannot be negative, which means that the equation

no roots.

To briefly write that the problem has no solutions, we use the empty set icon.

Answer:

So, this equation has two roots: and.

Answer:

Let's take the common factor out of brackets:

The product is equal to zero if at least one of the factors is equal to zero. This means that the equation has a solution when:

So, this quadratic equation has two roots: and.

Example:

Solve the equation.

Decision:

We factorize the left side of the equation and find the roots:

Answer:

Methods for solving complete quadratic equations:

1. Discriminant

Solving quadratic equations in this way is easy, the main thing is to remember the sequence of actions and a couple of formulas. Remember, any quadratic equation can be solved using the discriminant! Even incomplete.

Did you notice the root of the discriminant in the root formula? But the discriminant can be negative. What to do? We need to pay special attention to step 2. The discriminant tells us the number of roots of the equation.

  • If, then the equation has a root:
  • If, then the equation has the same root, but in fact, one root:

    Such roots are called double roots.

  • If, then the root of the discriminant is not extracted. This indicates that the equation has no roots.

Why are there different numbers of roots? Let us turn to the geometric meaning of the quadratic equation. The graph of the function is a parabola:

In a particular case, which is a quadratic equation, . And this means that the roots of the quadratic equation are the points of intersection with the x-axis (axis). The parabola may not cross the axis at all, or it may intersect it at one (when the top of the parabola lies on the axis) or two points.

In addition, the coefficient is responsible for the direction of the branches of the parabola. If, then the branches of the parabola are directed upwards, and if - then downwards.

Examples:

Solutions:

Answer:

Answer: .

Answer:

This means there are no solutions.

Answer: .

2. Vieta's theorem

Using the Vieta theorem is very easy: you just need to choose a pair of numbers whose product is equal to the free term of the equation, and the sum is equal to the second coefficient, taken with the opposite sign.

It is important to remember that Vieta's theorem can only be applied to given quadratic equations ().

Let's look at a few examples:

Example #1:

Solve the equation.

Decision:

This equation is suitable for solution using Vieta's theorem, because . Other coefficients: ; .

The sum of the roots of the equation is:

And the product is:

Let's select such pairs of numbers, the product of which is equal, and check if their sum is equal:

  • and. The sum is;
  • and. The sum is;
  • and. The amount is equal.

and are the solution of the system:

Thus, and are the roots of our equation.

Answer: ; .

Example #2:

Decision:

We select such pairs of numbers that give in the product, and then check whether their sum is equal:

and: give in total.

and: give in total. To get it, you just need to change the signs of the alleged roots: and, after all, the work.

Answer:

Example #3:

Decision:

The free term of the equation is negative, and hence the product of the roots is a negative number. This is possible only if one of the roots is negative and the other is positive. So the sum of the roots is differences of their modules.

We select such pairs of numbers that give in the product, and the difference of which is equal to:

and: their difference is - not suitable;

and: - not suitable;

and: - not suitable;

and: - suitable. It remains only to remember that one of the roots is negative. Since their sum must be equal, then the root, which is smaller in absolute value, must be negative: . We check:

Answer:

Example #4:

Solve the equation.

Decision:

The equation is reduced, which means:

The free term is negative, and hence the product of the roots is negative. And this is possible only when one root of the equation is negative and the other is positive.

We select such pairs of numbers whose product is equal, and then determine which roots should have a negative sign:

Obviously, only roots and are suitable for the first condition:

Answer:

Example #5:

Solve the equation.

Decision:

The equation is reduced, which means:

The sum of the roots is negative, which means that at least one of the roots is negative. But since their product is positive, it means both roots are minus.

We select such pairs of numbers, the product of which is equal to:

Obviously, the roots are the numbers and.

Answer:

Agree, it is very convenient - to invent roots orally, instead of counting this nasty discriminant. Try to use Vieta's theorem as often as possible.

But the Vieta theorem is needed in order to facilitate and speed up finding the roots. To make it profitable for you to use it, you must bring the actions to automatism. And for this, solve five more examples. But don't cheat: you can't use the discriminant! Only Vieta's theorem:

Solutions for tasks for independent work:

Task 1. ((x)^(2))-8x+12=0

According to Vieta's theorem:

As usual, we start the selection with the product:

Not suitable because the amount;

: the amount is what you need.

Answer: ; .

Task 2.

And again, our favorite Vieta theorem: the sum should work out, but the product is equal.

But since it should be not, but, we change the signs of the roots: and (in total).

Answer: ; .

Task 3.

Hmm... Where is it?

It is necessary to transfer all the terms into one part:

The sum of the roots is equal to the product.

Yes, stop! The equation is not given. But Vieta's theorem is applicable only in the given equations. So first you need to bring the equation. If you can’t bring it up, drop this idea and solve it in another way (for example, through the discriminant). Let me remind you that to bring a quadratic equation means to make the leading coefficient equal to:

Fine. Then the sum of the roots is equal, and the product.

It's easier to pick up here: after all - a prime number (sorry for the tautology).

Answer: ; .

Task 4.

The free term is negative. What's so special about it? And the fact that the roots will be of different signs. And now, during the selection, we check not the sum of the roots, but the difference between their modules: this difference is equal, but the product.

So, the roots are equal and, but one of them is with a minus. Vieta's theorem tells us that the sum of the roots is equal to the second coefficient with the opposite sign, that is. This means that the smaller root will have a minus: and, since.

Answer: ; .

Task 5.

What needs to be done first? That's right, give the equation:

Again: we select the factors of the number, and their difference should be equal to:

The roots are equal and, but one of them is minus. Which? Their sum must be equal, which means that with a minus there will be a larger root.

Answer: ; .

Let me summarize:
  1. Vieta's theorem is used only in the given quadratic equations.
  2. Using the Vieta theorem, you can find the roots by selection, orally.
  3. If the equation is not given or no suitable pair of factors of the free term was found, then there are no integer roots, and you need to solve it in another way (for example, through the discriminant).

3. Full square selection method

If all the terms containing the unknown are represented as terms from the formulas of abbreviated multiplication - the square of the sum or difference - then after the change of variables, the equation can be represented as an incomplete quadratic equation of the type.

For example:

Example 1:

Solve the equation: .

Decision:

Answer:

Example 2:

Solve the equation: .

Decision:

Answer:

In general, the transformation will look like this:

This implies: .

Doesn't it remind you of anything? It's the discriminant! That's exactly how the discriminant formula was obtained.

QUADRATIC EQUATIONS. BRIEFLY ABOUT THE MAIN

Quadratic equation is an equation of the form, where is the unknown, are the coefficients of the quadratic equation, is the free term.

Complete quadratic equation- an equation in which the coefficients are not equal to zero.

Reduced quadratic equation- an equation in which the coefficient, that is: .

Incomplete quadratic equation- an equation in which the coefficient and or free term c are equal to zero:

  • if the coefficient, the equation has the form: ,
  • if a free term, the equation has the form: ,
  • if and, the equation has the form: .

1. Algorithm for solving incomplete quadratic equations

1.1. An incomplete quadratic equation of the form, where, :

1) Express the unknown: ,

2) Check the sign of the expression:

  • if, then the equation has no solutions,
  • if, then the equation has two roots.

1.2. An incomplete quadratic equation of the form, where, :

1) Let's take the common factor out of brackets: ,

2) The product is equal to zero if at least one of the factors is equal to zero. Therefore, the equation has two roots:

1.3. An incomplete quadratic equation of the form, where:

This equation always has only one root: .

2. Algorithm for solving complete quadratic equations of the form where

2.1. Solution using the discriminant

1) Let's bring the equation to the standard form: ,

2) Calculate the discriminant using the formula: , which indicates the number of roots of the equation:

3) Find the roots of the equation:

  • if, then the equation has a root, which are found by the formula:
  • if, then the equation has a root, which is found by the formula:
  • if, then the equation has no roots.

2.2. Solution using Vieta's theorem

The sum of the roots of the reduced quadratic equation (an equation of the form, where) is equal, and the product of the roots is equal, i.e. , a.

2.3. Full square solution