At what height do the dense layers of the atmosphere begin? Atmosphere, its composition and structure. Atmosphere functions

Troposphere

Its upper limit is at an altitude of 8-10 km in polar, 10-12 km in temperate and 16-18 km in tropical latitudes; lower in winter than in summer. The lower, main layer of the atmosphere contains more than 80% of the total mass of atmospheric air and about 90% of all water vapor present in the atmosphere. In the troposphere, turbulence and convection are highly developed, clouds appear, cyclones and anticyclones develop. Temperature decreases with altitude with an average vertical gradient of 0.65°/100 m

tropopause

The transitional layer from the troposphere to the stratosphere, the layer of the atmosphere in which the decrease in temperature with height stops.

Stratosphere

The layer of the atmosphere located at an altitude of 11 to 50 km. A slight change in temperature in the 11-25 km layer (the lower layer of the stratosphere) and its increase in the 25-40 km layer from −56.5 to 0.8 °C (upper stratosphere layer or inversion region) are typical. Having reached a value of about 273 K (almost 0 °C) at an altitude of about 40 km, the temperature remains constant up to an altitude of about 55 km. This region of constant temperature is called the stratopause and is the boundary between the stratosphere and the mesosphere.

Stratopause

The boundary layer of the atmosphere between the stratosphere and the mesosphere. There is a maximum in the vertical temperature distribution (about 0 °C).

Mesosphere

The mesosphere begins at an altitude of 50 km and extends up to 80-90 km. The temperature decreases with height with an average vertical gradient of (0.25-0.3)°/100 m. The main energy process is radiant heat transfer. Complex photochemical processes involving free radicals, vibrationally excited molecules, etc., cause atmospheric luminescence.

mesopause

Transitional layer between mesosphere and thermosphere. There is a minimum in the vertical temperature distribution (about -90 °C).

Karman Line

Altitude above sea level, which is conventionally accepted as the boundary between the Earth's atmosphere and space. The Karmana line is located at an altitude of 100 km above sea level.

Earth's atmosphere boundary

Thermosphere

The upper limit is about 800 km. The temperature rises to altitudes of 200-300 km, where it reaches values ​​of the order of 1500 K, after which it remains almost constant up to high altitudes. Under the influence of ultraviolet and x-ray solar radiation and cosmic radiation, air is ionized (“polar lights”) - the main regions of the ionosphere lie inside the thermosphere. At altitudes above 300 km, atomic oxygen predominates. The upper limit of the thermosphere is largely determined by the current activity of the Sun. During periods of low activity, there is a noticeable decrease in the size of this layer.

Thermopause

The region of the atmosphere above the thermosphere. In this region, the absorption of solar radiation is insignificant and the temperature does not actually change with height.

Exosphere (scattering sphere)

Atmospheric layers up to a height of 120 km

Exosphere - scattering zone, the outer part of the thermosphere, located above 700 km. The gas in the exosphere is very rarefied, and hence its particles leak into interplanetary space (dissipation).

Up to a height of 100 km, the atmosphere is a homogeneous, well-mixed mixture of gases. In higher layers, the distribution of gases in height depends on their molecular masses, the concentration of heavier gases decreases faster with distance from the Earth's surface. Due to the decrease in gas density, the temperature drops from 0 °C in the stratosphere to −110 °C in the mesosphere. However, the kinetic energy of individual particles at altitudes of 200–250 km corresponds to a temperature of ~150 °C. Above 200 km, significant fluctuations in temperature and gas density are observed in time and space.

At an altitude of about 2000-3500 km, the exosphere gradually passes into the so-called near space vacuum, which is filled with highly rarefied particles of interplanetary gas, mainly hydrogen atoms. But this gas is only part of the interplanetary matter. The other part is composed of dust-like particles of cometary and meteoric origin. In addition to extremely rarefied dust-like particles, electromagnetic and corpuscular radiation of solar and galactic origin penetrates into this space.

The troposphere accounts for about 80% of the mass of the atmosphere, the stratosphere accounts for about 20%; the mass of the mesosphere is no more than 0.3%, the thermosphere is less than 0.05% of the total mass of the atmosphere. Based on the electrical properties in the atmosphere, the neutrosphere and ionosphere are distinguished. It is currently believed that the atmosphere extends to an altitude of 2000-3000 km.

Depending on the composition of the gas in the atmosphere, homosphere and heterosphere are distinguished. The heterosphere is an area where gravity has an effect on the separation of gases, since their mixing at such a height is negligible. Hence follows the variable composition of the heterosphere. Below it lies a well-mixed, homogeneous part of the atmosphere, called the homosphere. The boundary between these layers is called the turbopause and lies at an altitude of about 120 km.

ATMOSPHERE OF THE EARTH(Greek atmos steam + sphaira ball) - gaseous shell surrounding the Earth. The mass of the atmosphere is about 5.15·10 15 The biological significance of the atmosphere is enormous. In the atmosphere, mass-energy exchange takes place between animate and inanimate nature, between flora and fauna. Atmospheric nitrogen is assimilated by microorganisms; plants synthesize organic substances from carbon dioxide and water due to the energy of the sun and release oxygen. The presence of the atmosphere ensures the preservation of water on Earth, which is also an important condition for the existence of living organisms.

Studies carried out with the help of high-altitude geophysical rockets, artificial earth satellites and interplanetary automatic stations have established that the earth's atmosphere extends for thousands of kilometers. The boundaries of the atmosphere are unstable, they are influenced by the gravitational field of the moon and the pressure of the flow of sunlight. Above the equator in the region of the earth's shadow, the atmosphere reaches heights of about 10,000 km, and above the poles, its boundaries are 3,000 km away from the earth's surface. The main mass of the atmosphere (80-90%) is within altitudes up to 12-16 km, which is explained by the exponential (non-linear) nature of the decrease in the density (rarefaction) of its gaseous medium as the height above sea level increases.

The existence of most living organisms in natural conditions is possible in even narrower boundaries of the atmosphere, up to 7-8 km, where a combination of such atmospheric factors as gas composition, temperature, pressure, and humidity, necessary for the active course of biological processes, takes place. The movement and ionization of air, atmospheric precipitation, and the electrical state of the atmosphere are also of hygienic importance.

Gas composition

The atmosphere is a physical mixture of gases (Table 1), mainly nitrogen and oxygen (78.08 and 20.95 vol. %). The ratio of atmospheric gases is almost the same up to altitudes of 80-100 km. The constancy of the main part of the gas composition of the atmosphere is due to the relative balancing of the processes of gas exchange between animate and inanimate nature and the continuous mixing of air masses in the horizontal and vertical directions.

Table 1. CHARACTERISTICS OF THE CHEMICAL COMPOSITION OF DRY ATMOSPHERIC AIR NEAR THE EARTH'S SURFACE

Gas composition

Volume concentration, %

Oxygen

Carbon dioxide

Nitrous oxide

Sulfur dioxide

0 to 0.0001

0 to 0.000007 in summer, 0 to 0.000002 in winter

nitrogen dioxide

0 to 0.000002

Carbon monoxide

At altitudes above 100 km, the percentage of individual gases changes due to their diffuse stratification under the influence of gravity and temperature. In addition, under the action of the short-wavelength part of ultraviolet and X-rays at an altitude of 100 km or more, oxygen, nitrogen and carbon dioxide molecules dissociate into atoms. At high altitudes, these gases are in the form of highly ionized atoms.

The content of carbon dioxide in the atmosphere of different regions of the Earth is less constant, which is partly due to the uneven distribution of large industrial enterprises that pollute the air, as well as the uneven distribution of vegetation and water basins that absorb carbon dioxide on the Earth. Also variable in the atmosphere is the content of aerosols (see) - particles suspended in the air ranging in size from several millimicrons to several tens of microns - formed as a result of volcanic eruptions, powerful artificial explosions, pollution by industrial enterprises. The concentration of aerosols decreases rapidly with height.

The most unstable and important of the variable components of the atmosphere is water vapor, the concentration of which at the earth's surface can vary from 3% (in the tropics) to 2 × 10 -10% (in Antarctica). The higher the air temperature, the more moisture, ceteris paribus, can be in the atmosphere and vice versa. The bulk of water vapor is concentrated in the atmosphere up to altitudes of 8-10 km. The content of water vapor in the atmosphere depends on the combined influence of the processes of evaporation, condensation and horizontal transport. At high altitudes, due to a decrease in temperature and condensation of vapors, the air is practically dry.

The Earth's atmosphere, in addition to molecular and atomic oxygen, contains a small amount of ozone (see), the concentration of which is very variable and varies depending on the height and season. Most of the ozone is contained in the region of the poles by the end of the polar night at an altitude of 15-30 km with a sharp decrease up and down. Ozone arises as a result of the photochemical action of ultraviolet solar radiation on oxygen, mainly at altitudes of 20-50 km. In this case, diatomic oxygen molecules partially decompose into atoms and, joining undecomposed molecules, form triatomic ozone molecules (polymeric, allotropic form of oxygen).

The presence in the atmosphere of a group of so-called inert gases (helium, neon, argon, krypton, xenon) is associated with the continuous flow of natural radioactive decay processes.

The biological significance of gases the atmosphere is very large. For most multicellular organisms, a certain content of molecular oxygen in a gaseous or aqueous medium is an indispensable factor in their existence, which during respiration determines the release of energy from organic substances created initially during photosynthesis. It is no coincidence that the upper boundaries of the biosphere (the part of the surface of the globe and the lower part of the atmosphere where life exists) are determined by the presence of a sufficient amount of oxygen. In the process of evolution, organisms have adapted to a certain level of oxygen in the atmosphere; changing the oxygen content in the direction of decreasing or increasing has an adverse effect (see Altitude sickness, Hyperoxia, Hypoxia).

The ozone-allotropic form of oxygen also has a pronounced biological effect. At concentrations not exceeding 0.0001 mg / l, which is typical for resort areas and sea coasts, ozone has a healing effect - it stimulates breathing and cardiovascular activity, improves sleep. With an increase in the concentration of ozone, its toxic effect is manifested: eye irritation, necrotic inflammation of the mucous membranes of the respiratory tract, exacerbation of pulmonary diseases, autonomic neuroses. Entering into combination with hemoglobin, ozone forms methemoglobin, which leads to a violation of the respiratory function of the blood; the transfer of oxygen from the lungs to the tissues becomes difficult, the phenomena of suffocation develop. Atomic oxygen has a similar adverse effect on the body. Ozone plays a significant role in creating the thermal regimes of various layers of the atmosphere due to the extremely strong absorption of solar radiation and terrestrial radiation. Ozone absorbs ultraviolet and infrared rays most intensively. Solar rays with a wavelength of less than 300 nm are almost completely absorbed by atmospheric ozone. Thus, the Earth is surrounded by a kind of "ozone screen" that protects many organisms from the harmful effects of ultraviolet radiation from the sun. Nitrogen in atmospheric air is of great biological importance, primarily as a source of so-called. fixed nitrogen - a resource of plant (and ultimately animal) food. The physiological significance of nitrogen is determined by its participation in creating the level of atmospheric pressure necessary for life processes. Under certain conditions of pressure changes, nitrogen plays a major role in the development of a number of disorders in the body (see Decompression sickness). Assumptions that nitrogen weakens the toxic effect of oxygen on the body and is absorbed from the atmosphere not only by microorganisms, but also by higher animals, are controversial.

The inert gases of the atmosphere (xenon, krypton, argon, neon, helium) at the partial pressure they create under normal conditions can be classified as biologically indifferent gases. With a significant increase in partial pressure, these gases have a narcotic effect.

The presence of carbon dioxide in the atmosphere ensures the accumulation of solar energy in the biosphere due to the photosynthesis of complex carbon compounds, which continuously arise, change and decompose in the course of life. This dynamic system is maintained as a result of the activity of algae and land plants that capture the energy of sunlight and use it to convert carbon dioxide (see) and water into a variety of organic compounds with the release of oxygen. The upward extension of the biosphere is partially limited by the fact that at altitudes of more than 6-7 km, chlorophyll-containing plants cannot live due to the low partial pressure of carbon dioxide. Carbon dioxide is also very active in physiological terms, as it plays an important role in the regulation of metabolic processes, the activity of the central nervous system, respiration, blood circulation, and the oxygen regime of the body. However, this regulation is mediated by the influence of carbon dioxide produced by the body itself, and not from the atmosphere. In the tissues and blood of animals and humans, the partial pressure of carbon dioxide is approximately 200 times higher than its pressure in the atmosphere. And only with a significant increase in the content of carbon dioxide in the atmosphere (more than 0.6-1%), there are violations in the body, denoted by the term hypercapnia (see). The complete elimination of carbon dioxide from the inhaled air cannot directly have an adverse effect on the human and animal organisms.

Carbon dioxide plays a role in absorbing long-wavelength radiation and maintaining the "greenhouse effect" that raises the temperature near the Earth's surface. The problem of the influence on thermal and other regimes of the atmosphere of carbon dioxide, which enters the air in huge quantities as a waste product of industry, is also being studied.

Atmospheric water vapor (air humidity) also affects the human body, in particular, heat exchange with the environment.

As a result of the condensation of water vapor in the atmosphere, clouds form and precipitation (rain, hail, snow) falls. Water vapor, scattering solar radiation, participate in the creation of the thermal regime of the Earth and the lower layers of the atmosphere, in the formation of meteorological conditions.

Atmosphere pressure

Atmospheric pressure (barometric) is the pressure exerted by the atmosphere under the influence of gravity on the surface of the Earth. The value of this pressure at each point in the atmosphere is equal to the weight of the overlying column of air with a unit base, extending above the place of measurement to the boundaries of the atmosphere. Atmospheric pressure is measured with a barometer (see) and expressed in millibars, in newtons per square meter or the height of the mercury column in the barometer in millimeters, reduced to 0 ° and the normal value of the acceleration of gravity. In table. 2 shows the most commonly used units of atmospheric pressure.

The change in pressure occurs due to uneven heating of air masses located above land and water at different geographical latitudes. As the temperature rises, the density of air and the pressure it creates decrease. A huge accumulation of fast-moving air with reduced pressure (with a decrease in pressure from the periphery to the center of the vortex) is called a cyclone, with increased pressure (with an increase in pressure towards the center of the vortex) - an anticyclone. For weather forecasting, non-periodic changes in atmospheric pressure are important, which occur in moving vast masses and are associated with the emergence, development and destruction of anticyclones and cyclones. Especially large changes in atmospheric pressure are associated with the rapid movement of tropical cyclones. At the same time, atmospheric pressure can vary by 30-40 mbar per day.

The drop in atmospheric pressure in millibars over a distance of 100 km is called the horizontal barometric gradient. Typically, the horizontal barometric gradient is 1–3 mbar, but in tropical cyclones it sometimes rises to tens of millibars per 100 km.

As the altitude rises, atmospheric pressure decreases in a logarithmic relationship: at first very sharply, and then less and less noticeably (Fig. 1). Therefore, the barometric pressure curve is exponential.

The decrease in pressure per unit vertical distance is called the vertical barometric gradient. Often they use the reciprocal of it - the barometric step.

Since the barometric pressure is the sum of the partial pressures of the gases that form the air, it is obvious that with the rise to a height, along with a decrease in the total pressure of the atmosphere, the partial pressure of the gases that make up the air also decreases. The value of the partial pressure of any gas in the atmosphere is calculated by the formula

where P x ​​is the partial pressure of the gas, P z is the atmospheric pressure at altitude Z, X% is the percentage of gas whose partial pressure is to be determined.

Rice. 1. Change in barometric pressure depending on the height above sea level.

Rice. 2. Change in the partial pressure of oxygen in the alveolar air and saturation of arterial blood with oxygen depending on the change in altitude when breathing air and oxygen. Oxygen breathing starts from a height of 8.5 km (experiment in a pressure chamber).

Rice. 3. Comparative curves of the average values ​​of active consciousness in a person in minutes at different heights after a rapid rise while breathing air (I) and oxygen (II). At altitudes above 15 km, active consciousness is equally disturbed when breathing oxygen and air. At altitudes up to 15 km, oxygen breathing significantly prolongs the period of active consciousness (experiment in a pressure chamber).

Since the percentage composition of atmospheric gases is relatively constant, to determine the partial pressure of any gas, it is only necessary to know the total barometric pressure at a given altitude (Fig. 1 and Table 3).

Table 3. TABLE OF STANDARD ATMOSPHERE (GOST 4401-64) 1

Geometric height (m)

Temperature

barometric pressure

Partial pressure of oxygen (mmHg)

mmHg Art.

1 Given in abbreviated form and supplemented by the column "Partial pressure of oxygen".

When determining the partial pressure of a gas in humid air, subtract the pressure (elasticity) of saturated vapors from the barometric pressure.

The formula for determining the partial pressure of a gas in moist air will be slightly different than for dry air:

where pH 2 O is the elasticity of water vapor. At t° 37°, the elasticity of saturated water vapor is 47 mm Hg. Art. This value is used in calculating the partial pressures of gases in alveolar air in ground and high-altitude conditions.

Effects of high and low blood pressure on the body. Changes in barometric pressure upwards or downwards have a variety of effects on the organism of animals and humans. The influence of increased pressure is associated with the mechanical and penetrating physical and chemical action of the gaseous medium (the so-called compression and penetrating effects).

The compression effect is manifested by: general volumetric compression, due to a uniform increase in the forces of mechanical pressure on organs and tissues; mechanonarcosis due to uniform volumetric compression at very high barometric pressure; local uneven pressure on tissues that limit gas-containing cavities when there is a broken connection between the outside air and the air in the cavity, for example, the middle ear, the accessory cavities of the nose (see Barotrauma); an increase in gas density in the external respiration system, which causes an increase in resistance to respiratory movements, especially during forced breathing (exercise, hypercapnia).

The penetrating effect can lead to the toxic effect of oxygen and indifferent gases, an increase in the content of which in the blood and tissues causes a narcotic reaction, the first signs of a cut when using a nitrogen-oxygen mixture in humans occur at a pressure of 4-8 atm. An increase in the partial pressure of oxygen initially reduces the level of functioning of the cardiovascular and respiratory systems due to the shutdown of the regulatory effect of physiological hypoxemia. With an increase in the partial pressure of oxygen in the lungs more than 0.8-1 ata, its toxic effect is manifested (damage to the lung tissue, convulsions, collapse).

The penetrating and compressive effects of the increased pressure of the gaseous medium are used in clinical medicine in the treatment of various diseases with general and local impairment of oxygen supply (see Barotherapy, Oxygen therapy).

Lowering the pressure has an even more pronounced effect on the body. Under conditions of an extremely rarefied atmosphere, the main pathogenetic factor leading to loss of consciousness in a few seconds, and to death in 4-5 minutes, is a decrease in the partial pressure of oxygen in the inhaled air, and then in the alveolar air, blood and tissues (Fig. 2 and 3). Moderate hypoxia causes the development of adaptive reactions of the respiratory system and hemodynamics, aimed at maintaining oxygen supply primarily to vital organs (brain, heart). With a pronounced lack of oxygen, oxidative processes are inhibited (due to respiratory enzymes), and aerobic processes of energy production in mitochondria are disrupted. This leads first to a breakdown in the functions of vital organs, and then to irreversible structural damage and death of the body. The development of adaptive and pathological reactions, a change in the functional state of the body and human performance with a decrease in atmospheric pressure is determined by the degree and rate of decrease in the partial pressure of oxygen in the inhaled air, the duration of stay at a height, the intensity of the work performed, the initial state of the body (see Altitude sickness).

A decrease in pressure at altitudes (even with the exclusion of lack of oxygen) causes serious disorders in the body, united by the concept of "decompression disorders", which include: high-altitude flatulence, barotitis and barosinusitis, high-altitude decompression sickness and high-altitude tissue emphysema.

High-altitude flatulence develops due to the expansion of gases in the gastrointestinal tract with a decrease in barometric pressure on the abdominal wall when ascending to altitudes of 7-12 km or more. Of certain importance is the release of gases dissolved in the intestinal contents.

Expansion of gases leads to stretching of the stomach and intestines, raising the diaphragm, changing the position of the heart, irritating the receptor apparatus of these organs and causing pathological reflexes that disrupt breathing and blood circulation. Often there are sharp pains in the abdomen. Similar phenomena sometimes occur in divers when ascending from depth to the surface.

The mechanism of development of barotitis and barosinusitis, manifested by a feeling of congestion and pain, respectively, in the middle ear or accessory cavities of the nose, is similar to the development of high-altitude flatulence.

The decrease in pressure, in addition to expanding the gases contained in the body cavities, also causes the release of gases from liquids and tissues in which they were dissolved under pressure at sea level or at depth, and the formation of gas bubbles in the body.

This process of an exit of the dissolved gases (first of all nitrogen) causes development of a decompression sickness (see).

Rice. 4. Dependence of the boiling point of water on altitude and barometric pressure. The pressure numbers are located below the corresponding altitude numbers.

With a decrease in atmospheric pressure, the boiling point of liquids decreases (Fig. 4). At an altitude of more than 19 km, where the barometric pressure is equal to (or less than) the elasticity of saturated vapors at body temperature (37 °), “boiling” of the interstitial and intercellular fluid of the body can occur, resulting in large veins, in the cavity of the pleura, stomach, pericardium , in loose adipose tissue, that is, in areas with low hydrostatic and interstitial pressure, water vapor bubbles form, high-altitude tissue emphysema develops. Altitude "boiling" does not affect cellular structures, being localized only in the intercellular fluid and blood.

Massive steam bubbles can block the work of the heart and blood circulation and disrupt the functioning of vital systems and organs. This is a serious complication of acute oxygen starvation that develops at high altitudes. Prevention of high-altitude tissue emphysema can be achieved by creating external counterpressure on the body with high-altitude equipment.

The very process of lowering barometric pressure (decompression) under certain parameters can become a damaging factor. Depending on the speed, decompression is divided into smooth (slow) and explosive. The latter proceeds in less than 1 second and is accompanied by a strong bang (as in a shot), the formation of fog (condensation of water vapor due to cooling of expanding air). Typically, explosive decompression occurs at altitudes when the glazing of a pressurized cockpit or pressure suit breaks.

In explosive decompression, the lungs are the first to suffer. A rapid increase in intrapulmonary excess pressure (more than 80 mm Hg) leads to a significant stretching of the lung tissue, which can cause rupture of the lungs (with their expansion by 2.3 times). Explosive decompression can also cause damage to the gastrointestinal tract. The amount of overpressure that occurs in the lungs will largely depend on the rate of air outflow from them during decompression and the volume of air in the lungs. It is especially dangerous if the upper airways at the time of decompression turn out to be closed (when swallowing, holding the breath) or decompression coincides with the phase of deep inspiration, when the lungs are filled with a large amount of air.

Atmospheric temperature

The temperature of the atmosphere initially decreases with increasing altitude (on average, from 15° near the ground to -56.5° at an altitude of 11-18 km). The vertical temperature gradient in this zone of the atmosphere is about 0.6° for every 100 m; it changes during the day and year (Table 4).

Table 4. CHANGES IN THE VERTICAL TEMPERATURE GRADIENT OVER THE MIDDLE STRIP OF THE USSR TERRITORY

Rice. 5. Change in the temperature of the atmosphere at different heights. The boundaries of the spheres are indicated by a dotted line.

At altitudes of 11 - 25 km, the temperature becomes constant and amounts to -56.5 °; then the temperature begins to rise, reaching 30–40° at an altitude of 40 km, and 70° at an altitude of 50–60 km (Fig. 5), which is associated with intense absorption of solar radiation by ozone. From a height of 60-80 km, the air temperature again decreases slightly (up to 60°C), and then progressively increases and reaches 270°C at an altitude of 120 km, 800°C at an altitude of 220 km, 1500°C at an altitude of 300 km, and

on the border with outer space - more than 3000 °. It should be noted that due to the high rarefaction and low density of gases at these heights, their heat capacity and ability to heat colder bodies is very small. Under these conditions, the transfer of heat from one body to another occurs only through radiation. All considered changes in temperature in the atmosphere are associated with the absorption of solar thermal energy by air masses - direct and reflected.

In the lower part of the atmosphere near the Earth's surface, the temperature distribution depends on the influx of solar radiation and therefore has a mainly latitudinal character, that is, lines of equal temperature - isotherms - are parallel to latitudes. Since the atmosphere in the lower layers is heated from the earth's surface, the horizontal temperature change is strongly influenced by the distribution of continents and oceans, the thermal properties of which are different. Usually, reference books indicate the temperature measured during network meteorological observations with a thermometer installed at a height of 2 m above the soil surface. The highest temperatures (up to 58°C) are observed in the deserts of Iran, and in the USSR - in the south of Turkmenistan (up to 50°), the lowest (up to -87°) in Antarctica, and in the USSR - in the regions of Verkhoyansk and Oymyakon (up to -68° ). In winter, the vertical temperature gradient in some cases, instead of 0.6 °, can exceed 1 ° per 100 m or even take a negative value. During the day in the warm season, it can be equal to many tens of degrees per 100 m. There is also a horizontal temperature gradient, which is usually referred to as a distance of 100 km along the normal to the isotherm. The magnitude of the horizontal temperature gradient is tenths of a degree per 100 km, and in frontal zones it can exceed 10° per 100 m.

The human body is able to maintain thermal homeostasis (see) within a fairly narrow range of outdoor temperature fluctuations - from 15 to 45 °. Significant differences in the temperature of the atmosphere near the Earth and at heights require the use of special protective technical means to ensure the thermal balance between the human body and the environment in high-altitude and space flights.

Characteristic changes in the parameters of the atmosphere (temperature, pressure, chemical composition, electrical state) make it possible to conditionally divide the atmosphere into zones, or layers. Troposphere- the closest layer to the Earth, the upper boundary of which extends at the equator up to 17-18 km, at the poles - up to 7-8 km, in middle latitudes - up to 12-16 km. The troposphere is characterized by an exponential pressure drop, the presence of a constant vertical temperature gradient, horizontal and vertical movements of air masses, and significant changes in air humidity. The troposphere contains the bulk of the atmosphere, as well as a significant part of the biosphere; here all the main types of clouds arise, air masses and fronts are formed, cyclones and anticyclones develop. In the troposphere, due to the reflection of the sun's rays by the snow cover of the Earth and the cooling of the surface layers of air, the so-called inversion takes place, that is, an increase in temperature in the atmosphere from the bottom up instead of the usual decrease.

In the warm season in the troposphere there is a constant turbulent (random, chaotic) mixing of air masses and heat transfer by air flows (convection). Convection destroys fogs and reduces the dust content of the lower atmosphere.

The second layer of the atmosphere is stratosphere.

It starts from the troposphere as a narrow zone (1-3 km) with a constant temperature (tropopause) and extends to heights of about 80 km. A feature of the stratosphere is the progressive rarefaction of the air, the exceptionally high intensity of ultraviolet radiation, the absence of water vapor, the presence of a large amount of ozone and the gradual increase in temperature. The high content of ozone causes a number of optical phenomena (mirages), causes the reflection of sounds and has a significant effect on the intensity and spectral composition of electromagnetic radiation. In the stratosphere there is a constant mixing of air, so its composition is similar to the air of the troposphere, although its density at the upper boundaries of the stratosphere is extremely low. The prevailing winds in the stratosphere are westerly, and in the upper zone there is a transition to easterly winds.

The third layer of the atmosphere is ionosphere, which starts from the stratosphere and extends to altitudes of 600-800 km.

Distinctive features of the ionosphere are the extreme rarefaction of the gaseous medium, the high concentration of molecular and atomic ions and free electrons, and the high temperature. The ionosphere affects the propagation of radio waves, causing their refraction, reflection and absorption.

The main source of ionization in the high layers of the atmosphere is the ultraviolet radiation of the Sun. In this case, electrons are knocked out of the gas atoms, the atoms turn into positive ions, and the knocked-out electrons remain free or are captured by neutral molecules with the formation of negative ions. The ionization of the ionosphere is influenced by meteors, corpuscular, X-ray and gamma radiation of the Sun, as well as the seismic processes of the Earth (earthquakes, volcanic eruptions, powerful explosions), which generate acoustic waves in the ionosphere, which increase the amplitude and speed of oscillations of atmospheric particles and contribute to the ionization of gas molecules and atoms (see Aeroionization).

The electrical conductivity in the ionosphere, associated with a high concentration of ions and electrons, is very high. The increased electrical conductivity of the ionosphere plays an important role in the reflection of radio waves and the occurrence of auroras.

The ionosphere is the area of ​​flights of artificial earth satellites and intercontinental ballistic missiles. Currently, space medicine is studying the possible effects on the human body of flight conditions in this part of the atmosphere.

Fourth, outer layer of the atmosphere - exosphere. From here, atmospheric gases are scattered into the world space due to dissipation (overcoming the forces of gravity by molecules). Then there is a gradual transition from the atmosphere to interplanetary outer space. The exosphere differs from the latter by the presence of a large number of free electrons that form the 2nd and 3rd radiation belts of the Earth.

The division of the atmosphere into 4 layers is very arbitrary. So, according to electrical parameters, the entire thickness of the atmosphere is divided into 2 layers: the neutrosphere, in which neutral particles predominate, and the ionosphere. The temperature distinguishes the troposphere, stratosphere, mesosphere and thermosphere, separated respectively by tropo-, strato- and mesopauses. The layer of the atmosphere located between 15 and 70 km and characterized by a high content of ozone is called the ozonosphere.

For practical purposes, it is convenient to use the International Standard Atmosphere (MCA), for which the following conditions are accepted: the pressure at sea level at t ° 15 ° is 1013 mbar (1.013 X 10 5 nm 2, or 760 mm Hg); the temperature decreases by 6.5° per 1 km to a level of 11 km (conditional stratosphere), and then remains constant. In the USSR, the standard atmosphere GOST 4401 - 64 was adopted (Table 3).

Precipitation. Since the bulk of the atmospheric water vapor is concentrated in the troposphere, the processes of phase transitions of water, which cause precipitation, proceed mainly in the troposphere. Tropospheric clouds usually cover about 50% of the entire earth's surface, while clouds in the stratosphere (at altitudes of 20-30 km) and near the mesopause, called mother-of-pearl and noctilucent clouds, respectively, are observed relatively rarely. As a result of the condensation of water vapor in the troposphere, clouds form and precipitation occurs.

According to the nature of precipitation, precipitation is divided into 3 types: continuous, torrential, drizzling. The amount of precipitation is determined by the thickness of the layer of fallen water in millimeters; precipitation is measured by rain gauges and precipitation gauges. Precipitation intensity is expressed in millimeters per minute.

The distribution of precipitation in certain seasons and days, as well as over the territory, is extremely uneven, due to the circulation of the atmosphere and the influence of the Earth's surface. Thus, on the Hawaiian Islands, on average, 12,000 mm falls per year, and in the driest regions of Peru and the Sahara, precipitation does not exceed 250 mm, and sometimes does not fall for several years. In the annual dynamics of precipitation, the following types are distinguished: equatorial - with a maximum of precipitation after the spring and autumn equinoxes; tropical - with a maximum of precipitation in summer; monsoon - with a very pronounced peak in summer and dry winter; subtropical - with maximum precipitation in winter and dry summer; continental temperate latitudes - with a maximum of precipitation in summer; marine temperate latitudes - with a maximum of precipitation in winter.

The entire atmospheric-physical complex of climatic and meteorological factors that make up the weather is widely used to promote health, hardening, and for medicinal purposes (see Climatotherapy). Along with this, it has been established that sharp fluctuations in these atmospheric factors can adversely affect the physiological processes in the body, causing the development of various pathological conditions and the exacerbation of diseases, which are called meteotropic reactions (see Climatopathology). Of particular importance in this regard are frequent, long-term disturbances of the atmosphere and abrupt fluctuations in meteorological factors.

Meteotropic reactions are observed more often in people suffering from diseases of the cardiovascular system, polyarthritis, bronchial asthma, peptic ulcer, skin diseases.

Bibliography: Belinsky V. A. and Pobiyaho V. A. Aerology, L., 1962, bibliogr.; Biosphere and its resources, ed. V. A. Kovdy. Moscow, 1971. Danilov A. D. Chemistry of the ionosphere, L., 1967; Kolobkov N. V. Atmosphere and its life, M., 1968; Kalitin H.H. Fundamentals of atmospheric physics as applied to medicine, L., 1935; Matveev L. T. Fundamentals of general meteorology, Physics of the atmosphere, L., 1965, bibliogr.; Minkh A. A. Air ionization and its hygienic value, M., 1963, bibliogr.; it, Methods of hygienic researches, M., 1971, bibliogr.; Tverskoy P. N. Course of meteorology, L., 1962; Umansky S.P. Man in space, M., 1970; Khvostikov I. A. High layers of the atmosphere, L., 1964; X r g and a N A. X. Physics of the atmosphere, L., 1969, bibliogr.; Khromov S.P. Meteorology and climatology for geographical faculties, L., 1968.

Effects of high and low blood pressure on the body- Armstrong G. Aviation medicine, trans. from English, M., 1954, bibliogr.; Saltsman G.L. Physiological bases of a person's stay in conditions of high pressure of the gases of the environment, L., 1961, bibliogr.; Ivanov D. I. and Khromushkin A. I. Human life support systems during high-altitude and space flights, M., 1968, bibliogr.; Isakov P. K., etc. Theory and practice of aviation medicine, M., 1971, bibliogr.; Kovalenko E. A. and Chernyakov I. N. Oxygen of fabrics at extreme factors of flight, M., 1972, bibliogr.; Miles S. Underwater medicine, trans. from English, M., 1971, bibliography; Busby D. E. Space clinical medicine, Dordrecht, 1968.

I. H. Chernyakov, M. T. Dmitriev, S. I. Nepomnyashchy.


The atmosphere is one of the most important components of our planet. It is she who "shelters" people from the harsh conditions of outer space, such as solar radiation and space debris. However, many facts about the atmosphere are unknown to most people.

1. The true color of the sky




Although it's hard to believe, the sky is actually purple. When light enters the atmosphere, air and water particles absorb the light, scattering it. At the same time, violet color is scattered most of all, which is why people see the blue sky.

2. An exclusive element in the Earth's atmosphere



As many remember from school, the Earth's atmosphere consists of about 78% nitrogen, 21% oxygen, and small amounts of argon, carbon dioxide, and other gases. But few people know that our atmosphere is the only one so far discovered by scientists (besides comet 67P) that has free oxygen. Because oxygen is a highly reactive gas, it often reacts with other chemicals in space. Its pure form on Earth makes the planet habitable.

3. White stripe in the sky



Surely, some sometimes wondered why a white stripe remains in the sky behind a jet plane. These white trails, known as contrails, form when hot, moist exhaust gases from an aircraft engine mix with colder outside air. Water vapor from exhaust gases freezes and becomes visible.

4. The main layers of the atmosphere



The atmosphere of the Earth consists of five main layers, which make life possible on the planet. The first of these, the troposphere, extends from sea level to an altitude of about 17 km to the equator. Most of the weather events occur in it.

5. Ozone layer

The next layer of the atmosphere, the stratosphere, reaches a height of about 50 km at the equator. It contains the ozone layer, which protects people from dangerous ultraviolet rays. Even though this layer is above the troposphere, it may actually be warmer due to the absorbed energy from the sun's rays. Most jet planes and weather balloons fly in the stratosphere. Planes can fly faster in it because they are less affected by gravity and friction. Weather balloons can get a better idea of ​​storms, most of which occur lower in the troposphere.

6. Mesosphere



The mesosphere is the middle layer, extending to a height of 85 km above the surface of the planet. Its temperature fluctuates around -120°C. Most of the meteors that enter the Earth's atmosphere burn up in the mesosphere. The last two layers that pass into space are the thermosphere and the exosphere.

7. The disappearance of the atmosphere



The Earth has most likely lost its atmosphere several times. When the planet was covered in oceans of magma, massive interstellar objects crashed into it. These impacts, which also formed the Moon, may have formed the planet's atmosphere for the first time.

8. If there were no atmospheric gases...



Without various gases in the atmosphere, the Earth would be too cold for human existence. Water vapor, carbon dioxide, and other atmospheric gases absorb heat from the sun and "distribute" it over the planet's surface, helping to create a habitable climate.

9. Formation of the ozone layer



The notorious (and importantly necessary) ozone layer was created when oxygen atoms reacted with ultraviolet light from the sun to form ozone. It is ozone that absorbs most of the harmful radiation from the sun. Despite its importance, the ozone layer was formed relatively recently after enough life arose in the oceans to release into the atmosphere the amount of oxygen needed to create a minimum concentration of ozone.

10. Ionosphere



The ionosphere is so named because high-energy particles from space and from the Sun help form ions, creating an "electric layer" around the planet. When there were no satellites, this layer helped reflect radio waves.

11. Acid rain



Acid rain, which destroys entire forests and devastates aquatic ecosystems, forms in the atmosphere when sulfur dioxide or nitrogen oxide particles mix with water vapor and fall to the ground as rain. These chemical compounds are also found in nature: sulfur dioxide is produced during volcanic eruptions, and nitric oxide is produced during lightning strikes.

12. Lightning Power



Lightning is so powerful that just a single discharge can heat the surrounding air up to 30,000°C. The rapid heating causes an explosive expansion of the nearby air, which is heard in the form of a sound wave called thunder.



Aurora Borealis and Aurora Australis (Northern and Southern Aurora) are caused by ion reactions taking place in the fourth level of the atmosphere, the thermosphere. When highly charged solar wind particles collide with air molecules over the planet's magnetic poles, they glow and create magnificent light shows.

14. Sunsets



Sunsets often look like a burning sky as small atmospheric particles scatter light, reflecting it in orange and yellow hues. The same principle underlies the formation of rainbows.



In 2013, scientists discovered that tiny microbes can survive many kilometers above the Earth's surface. At an altitude of 8-15 km above the planet, microbes were found that destroy organic chemicals that float in the atmosphere, "feeding" on them.

Adherents of the theory of the apocalypse and various other horror stories will be interested to learn about.

At 0 °C - 1.0048 10 3 J / (kg K), C v - 0.7159 10 3 J / (kg K) (at 0 °C). The solubility of air in water (by mass) at 0 ° C - 0.0036%, at 25 ° C - 0.0023%.

In addition to the gases indicated in the table, the atmosphere contains Cl 2, SO 2, NH 3, CO, O 3, NO 2, hydrocarbons, HCl,, HBr, vapors, I 2, Br 2, as well as many other gases in minor quantities. In the troposphere there is constantly a large amount of suspended solid and liquid particles (aerosol). Radon (Rn) is the rarest gas in the Earth's atmosphere.

The structure of the atmosphere

boundary layer of the atmosphere

The lower layer of the atmosphere adjacent to the Earth's surface (1-2 km thick) in which the influence of this surface directly affects its dynamics.

Troposphere

Its upper limit is at an altitude of 8-10 km in polar, 10-12 km in temperate and 16-18 km in tropical latitudes; lower in winter than in summer. The lower, main layer of the atmosphere contains more than 80% of the total mass of atmospheric air and about 90% of all water vapor present in the atmosphere. Turbulence and convection are strongly developed in the troposphere, clouds appear, cyclones and anticyclones develop. Temperature decreases with altitude with an average vertical gradient of 0.65°/100 m

tropopause

The transitional layer from the troposphere to the stratosphere, the layer of the atmosphere in which the decrease in temperature with height stops.

Stratosphere

The layer of the atmosphere located at an altitude of 11 to 50 km. A slight change in temperature in the 11-25 km layer (lower layer of the stratosphere) and its increase in the 25-40 km layer from −56.5 to 0.8 ° (upper stratosphere or inversion region) are typical. Having reached a value of about 273 K (almost 0 °C) at an altitude of about 40 km, the temperature remains constant up to an altitude of about 55 km. This region of constant temperature is called the stratopause and is the boundary between the stratosphere and the mesosphere.

Stratopause

The boundary layer of the atmosphere between the stratosphere and the mesosphere. There is a maximum in the vertical temperature distribution (about 0 °C).

Mesosphere

The mesosphere begins at an altitude of 50 km and extends up to 80-90 km. The temperature decreases with height with an average vertical gradient of (0.25-0.3)°/100 m. The main energy process is radiant heat transfer. Complex photochemical processes involving free radicals, vibrationally excited molecules, etc., cause atmospheric luminescence.

mesopause

Transitional layer between mesosphere and thermosphere. There is a minimum in the vertical temperature distribution (about -90 °C).

Karman Line

Altitude above sea level, which is conventionally accepted as the boundary between the Earth's atmosphere and space. According to the FAI definition, the Karman Line is at an altitude of 100 km above sea level.

Thermosphere

The upper limit is about 800 km. The temperature rises to altitudes of 200-300 km, where it reaches values ​​of the order of 1226.85 C, after which it remains almost constant up to high altitudes. Under the influence of solar radiation and cosmic radiation, air is ionized (“ auroras”) - the main regions of the ionosphere lie inside the thermosphere. At altitudes above 300 km, atomic oxygen predominates. The upper limit of the thermosphere is largely determined by the current activity of the Sun. During periods of low activity - for example, in 2008-2009 - there is a noticeable decrease in the size of this layer.

Thermopause

The region of the atmosphere above the thermosphere. In this region, the absorption of solar radiation is insignificant and the temperature does not actually change with height.

Exosphere (scattering sphere)

Up to a height of 100 km, the atmosphere is a homogeneous, well-mixed mixture of gases. In higher layers, the distribution of gases in height depends on their molecular masses, the concentration of heavier gases decreases faster with distance from the Earth's surface. Due to the decrease in gas density, the temperature drops from 0 °C in the stratosphere to −110 °C in the mesosphere. However, the kinetic energy of individual particles at altitudes of 200–250 km corresponds to a temperature of ~150 °C. Above 200 km, significant fluctuations in temperature and gas density are observed in time and space.

At an altitude of about 2000-3500 km, the exosphere gradually passes into the so-called near space vacuum, which is filled with highly rarefied particles of interplanetary gas, mainly hydrogen atoms. But this gas is only part of the interplanetary matter. The other part is composed of dust-like particles of cometary and meteoric origin. In addition to extremely rarefied dust-like particles, electromagnetic and corpuscular radiation of solar and galactic origin penetrates into this space.

Review

The troposphere accounts for about 80% of the mass of the atmosphere, the stratosphere accounts for about 20%; the mass of the mesosphere is no more than 0.3%, the thermosphere is less than 0.05% of the total mass of the atmosphere.

Based on the electrical properties in the atmosphere, they emit the neutrosphere and ionosphere .

Depending on the composition of the gas in the atmosphere, they emit homosphere and heterosphere. heterosphere- this is an area where gravity affects the separation of gases, since their mixing at such a height is negligible. Hence follows the variable composition of the heterosphere. Below it lies a well-mixed, homogeneous part of the atmosphere, called the homosphere. The boundary between these layers is called turbopause, it lies at an altitude of about 120 km.

Other properties of the atmosphere and effects on the human body

Already at an altitude of 5 km above sea level, an untrained person develops oxygen starvation and, without adaptation, a person's performance is significantly reduced. This is where the physiological zone of the atmosphere ends. Human breathing becomes impossible at an altitude of 9 km, although up to about 115 km the atmosphere contains oxygen.

The atmosphere provides us with the oxygen we need to breathe. However, due to the decrease in the total pressure of the atmosphere, as one rises to a height, the partial pressure of oxygen also decreases accordingly.

In rarefied layers of air, the propagation of sound is impossible. Up to altitudes of 60-90 km, it is still possible to use air resistance and lift for controlled aerodynamic flight. But starting from altitudes of 100-130 km, the concepts of the number M and the sound barrier familiar to every pilot lose their meaning: there passes the conditional Karman line, beyond which the area of ​​​​purely ballistic flight begins, which can only be controlled using reactive forces.

At altitudes above 100 km, the atmosphere is also deprived of another remarkable property - the ability to absorb, conduct and transfer thermal energy by convection (that is, by mixing air). This means that various elements of equipment, equipment of the orbital space station will not be able to be cooled from the outside in the way it is usually done on an airplane - with the help of air jets and air radiators. At such a height, as in space in general, the only way to transfer heat is thermal radiation.

History of the formation of the atmosphere

According to the most common theory, the Earth's atmosphere has been in three different compositions throughout its history. Initially, it consisted of light gases (hydrogen and helium) captured from interplanetary space. This so-called primary atmosphere. At the next stage, active volcanic activity led to the saturation of the atmosphere with gases other than hydrogen (carbon dioxide, ammonia, water vapor). This is how secondary atmosphere. This atmosphere was restorative. Further, the process of formation of the atmosphere was determined by the following factors:

  • leakage of light gases (hydrogen and helium) into interplanetary space;
  • chemical reactions occurring in the atmosphere under the influence of ultraviolet radiation, lightning discharges and some other factors.

Gradually, these factors led to the formation tertiary atmosphere, characterized by a much lower content of hydrogen and a much higher content of nitrogen and carbon dioxide (formed as a result of chemical reactions from ammonia and hydrocarbons).

Nitrogen

The formation of a large amount of nitrogen N 2 is due to the oxidation of the ammonia-hydrogen atmosphere by molecular oxygen O 2, which began to come from the surface of the planet as a result of photosynthesis, starting from 3 billion years ago. Nitrogen N 2 is also released into the atmosphere as a result of the denitrification of nitrates and other nitrogen-containing compounds. Nitrogen is oxidized by ozone to NO in the upper atmosphere.

Nitrogen N 2 enters into reactions only under specific conditions (for example, during a lightning discharge). Oxidation of molecular nitrogen by ozone during electrical discharges is used in small quantities in the industrial production of nitrogen fertilizers. It can be oxidized with low energy consumption and converted into a biologically active form by cyanobacteria (blue-green algae) and nodule bacteria that form rhizobial symbiosis with legumes, which can be effective green manure plants that do not deplete, but enrich the soil with natural fertilizers.

Oxygen

The composition of the atmosphere began to change radically with the advent of living organisms on Earth, as a result of photosynthesis, accompanied by the release of oxygen and the absorption of carbon dioxide. Initially, oxygen was spent on the oxidation of reduced compounds - ammonia, hydrocarbons, the ferrous form of iron contained in the oceans, etc. At the end of this stage, the oxygen content in the atmosphere began to grow. Gradually, a modern atmosphere with oxidizing properties formed. Since this caused serious and abrupt changes in many processes occurring in the atmosphere, lithosphere and biosphere, this event was called the Oxygen catastrophe.

noble gases

Air pollution

Recently, man has begun to influence the evolution of the atmosphere. The result of human activity has been a constant increase in the content of carbon dioxide in the atmosphere due to the combustion of hydrocarbon fuels accumulated in previous geological epochs. Huge amounts of CO 2 are consumed during photosynthesis and absorbed by the world's oceans. This gas enters the atmosphere due to the decomposition of carbonate rocks and organic substances of plant and animal origin, as well as due to volcanism and human production activities. Over the past 100 years, the content of CO 2 in the atmosphere has increased by 10%, with the main part (360 billion tons) coming from fuel combustion. If the growth rate of fuel combustion continues, then in the next 200-300 years the amount of CO 2 in the atmosphere will double and may lead to global climate change.

Fuel combustion is the main source of polluting gases (СО,, SO 2). Sulfur dioxide is oxidized by atmospheric oxygen to SO 3, and nitric oxide to NO 2 in the upper atmosphere, which in turn interact with water vapor, and the resulting sulfuric acid H 2 SO 4 and nitric acid HNO 3 fall on the Earth's surface in the form so-called. acid rain. The use of internal combustion engines leads to significant air pollution with nitrogen oxides, hydrocarbons and lead compounds (tetraethyl lead Pb (CH 3 CH 2) 4).

Aerosol pollution of the atmosphere is caused both by natural causes (volcanic eruption, dust storms, entrainment of sea water droplets and plant pollen, etc.) and by human economic activity (mining of ores and building materials, fuel combustion, cement production, etc.). Intense large-scale removal of solid particles into the atmosphere is one of the possible causes of climate change on the planet.

see also

  • Jacchia (atmosphere model)

Write a review on the article "Atmosphere of the Earth"

Notes

  1. M. I. Budyko , K. Ya. Kondratiev Atmosphere of the Earth // Great Soviet Encyclopedia. 3rd ed. / Ch. ed. A. M. Prokhorov. - M .: Soviet Encyclopedia, 1970. - T. 2. Angola - Barzas. - pp. 380-384.
  2. - article from the Geological Encyclopedia
  3. Gribbin, John. Science. A History (1543-2001). - L. : Penguin Books, 2003. - 648 p. - ISBN 978-0-140-29741-6.
  4. Tans, Pieter. Globally averaged marine surface annual mean data . NOAA/ESRL. Retrieved February 19, 2014.(English) (for 2013)
  5. IPCC (English) (for 1998).
  6. S. P. Khromov Air humidity // Great Soviet Encyclopedia. 3rd ed. / Ch. ed. A. M. Prokhorov. - M .: Soviet Encyclopedia, 1971. - T. 5. Veshin - Gazli. - S. 149.
  7. (English) , SpaceDaily, 07/16/2010

Literature

  1. V. V. Parin, F. P. Kosmolinsky, B. A. Dushkov"Space biology and medicine" (2nd edition, revised and supplemented), M .: "Prosveshchenie", 1975, 223 pages.
  2. N. V. Gusakova"Chemistry of the environment", Rostov-on-Don: Phoenix, 2004, 192 with ISBN 5-222-05386-5
  3. Sokolov V. A. Geochemistry of natural gases, M., 1971;
  4. McEwen M, Phillips L. Chemistry of the atmosphere, M., 1978;
  5. Wark K., Warner S. Air pollution. Sources and control, trans. from English, M.. 1980;
  6. Monitoring of background pollution of natural environments. in. 1, L., 1982.

Links

  • // December 17, 2013, FOBOS Center

An excerpt characterizing the Earth's atmosphere

When Pierre approached them, he noticed that Vera was in the self-satisfied enthusiasm of the conversation, Prince Andrei (which rarely happened to him) seemed embarrassed.
- What do you think? Vera said with a thin smile. - You, prince, are so insightful and understand the character of people at once. What do you think of Natalie, can she be constant in her affections, can she, like other women (Vera understood herself), love a person once and remain faithful to him forever? This is what I consider true love. What do you think, prince?
“I know your sister too little,” answered Prince Andrei with a mocking smile, under which he wanted to hide his embarrassment, “to solve such a delicate question; and then I noticed that the less a woman likes, the more constant she is, ”he added and looked at Pierre, who had approached them at that time.
- Yes, it's true, prince; in our time, Vera continued (referring to our time, as limited people generally like to mention, believing that they have found and appreciated the features of our time and that the properties of people change with time), in our time the girl has so much freedom that le plaisir d "etre courtisee [the pleasure of having fans] often drowns out the true feeling in her. Et Nathalie, il faut l" avouer, y est tres sensible. [And Natalya, it must be confessed, is very sensitive to this.] The return to Natalya again made Prince Andrei frown unpleasantly; he wanted to get up, but Vera continued with an even more refined smile.
“I don’t think anyone was as courtisee [object of courtship] as she was,” Vera said; - but never, until very recently, did she seriously like anyone. You know, count, - she turned to Pierre, - even our dear cousin Boris, who was, entre nous [between us], very, very dans le pays du tendre ... [in the land of tenderness ...]
Prince Andrei frowned silently.
Are you friends with Boris? Vera told him.
- Yes, I know him…
- Did he tell you right about his childhood love for Natasha?
Was there childhood love? - suddenly suddenly blushing, asked Prince Andrei.
- Yes. Vous savez entre cousin et cousine cette intimate mene quelquefois a l "amour: le cousinage est un dangereux voisinage, N" est ce pas? [You know, between cousin and sister, this closeness sometimes leads to love. Such kinship is a dangerous neighborhood. Is not it?]
“Oh, without a doubt,” said Prince Andrei, and suddenly, unnaturally animated, he began to joke with Pierre about how careful he should be in his treatment of his 50-year-old Moscow cousins, and in the middle of a joking conversation, he got up and, taking under the arm of Pierre, took him aside.
- Well? - said Pierre, looking with surprise at the strange animation of his friend and noticing the look that he threw at Natasha getting up.
“I need, I need to talk to you,” said Prince Andrei. - You know our women's gloves (he talked about those Masonic gloves that were given to the newly elected brother to present to his beloved woman). - I ... But no, I'll talk to you later ... - And with a strange gleam in his eyes and restlessness in his movements, Prince Andrei went up to Natasha and sat down beside her. Pierre saw how Prince Andrei asked her something, and she, flushing, answered him.
But at this time, Berg approached Pierre, urging him to take part in a dispute between the general and the colonel about Spanish affairs.
Berg was pleased and happy. The smile of joy never left his face. The evening was very good and exactly like the other evenings he had seen. Everything was similar. And ladylike, subtle conversations, and cards, and behind the cards a general raising his voice, and a samovar, and cookies; but one thing was still missing, that which he always saw at parties, which he wished to imitate.
There was a lack of loud conversation between men and an argument about something important and clever. The general started this conversation and Berg brought Pierre to it.

The next day, Prince Andrei went to the Rostovs for dinner, as Count Ilya Andreich called him, and spent the whole day with them.
Everyone in the house felt for whom Prince Andrei went, and he, without hiding, tried all day to be with Natasha. Not only in the soul of Natasha, frightened, but happy and enthusiastic, but in the whole house, fear was felt before something important that had to happen. The Countess looked at Prince Andrei with sad and seriously stern eyes when he spoke with Natasha, and timidly and feignedly began some kind of insignificant conversation, as soon as he looked back at her. Sonya was afraid to leave Natasha and was afraid to be a hindrance when she was with them. Natasha turned pale with fear of anticipation when she remained face to face with him for minutes. Prince Andrei struck her with his timidity. She felt that he needed to tell her something, but that he could not bring himself to do so.
When Prince Andrei left in the evening, the countess went up to Natasha and said in a whisper:
- Well?
- Mom, for God's sake don't ask me anything now. You can’t say that,” Natasha said.
But despite the fact that that evening Natasha, now agitated, now frightened, with stopping eyes, lay for a long time in her mother's bed. Now she told her how he praised her, then how he said that he would go abroad, then how he asked where they would live this summer, then how he asked her about Boris.
“But this, this… has never happened to me!” she said. “Only I’m scared around him, I’m always scared around him, what does that mean?” So it's real, right? Mom, are you sleeping?
“No, my soul, I myself am afraid,” answered the mother. - Go.
“I won’t sleep anyway. What's wrong with sleeping? Mommy, mommy, this has never happened to me! she said with astonishment and fear before the feeling that she was aware of in herself. - And could we think! ...
It seemed to Natasha that even when she first saw Prince Andrei in Otradnoye, she fell in love with him. She seemed to be frightened by this strange, unexpected happiness that the one whom she had chosen back then (she was firmly convinced of this), that the same one had now met her again, and, as it seems, was not indifferent to her. “And it was necessary for him, now that we are here, to come to Petersburg on purpose. And we should have met at this ball. All this is fate. It is clear that this is fate, that all this was led to this. Even then, as soon as I saw him, I felt something special.
What else did he tell you? What verses are these? Read it ... - thoughtfully said the mother, asking about the poems that Prince Andrei wrote in Natasha's album.
- Mom, is it not a shame that he is a widower?
- That's it, Natasha. Pray to God. Les Marieiages se font dans les cieux. [Marriages are made in heaven.]
“Darling, mother, how I love you, how good it is for me!” Natasha shouted, crying tears of happiness and excitement and hugging her mother.
At the same time, Prince Andrei was sitting with Pierre and telling him about his love for Natasha and about his firm intention to marry her.

On that day, Countess Elena Vasilievna had a reception, there was a French envoy, there was a prince, who had recently become a frequent visitor to the countess's house, and many brilliant ladies and men. Pierre was downstairs, walked through the halls, and struck all the guests with his concentrated, absent-minded and gloomy look.
From the time of the ball, Pierre felt the approach of fits of hypochondria in himself and with a desperate effort tried to fight against them. From the time of the prince’s rapprochement with his wife, Pierre was unexpectedly granted a chamberlain, and from that time on he began to feel heaviness and shame in a large society, and more often the same gloomy thoughts about the futility of everything human began to come to him. At the same time, the feeling he noticed between Natasha, who was patronized by him, and Prince Andrei, his opposition between his position and the position of his friend, further strengthened this gloomy mood. He equally tried to avoid thoughts about his wife and about Natasha and Prince Andrei. Again everything seemed to him insignificant in comparison with eternity, again the question presented itself: “what for?”. And he forced himself day and night to work on the Masonic works, hoping to drive away the approach of the evil spirit. Pierre at 12 o'clock, leaving the countess's chambers, was sitting upstairs in a smoky, low room, in a worn dressing gown in front of the table and copying genuine Scottish acts, when someone entered his room. It was Prince Andrew.
“Ah, it’s you,” said Pierre with an absent-minded and displeased look. “But I’m working,” he said, pointing to a notebook with that kind of salvation from the hardships of life with which unhappy people look at their work.
Prince Andrei, with a radiant, enthusiastic face renewed to life, stopped in front of Pierre and, not noticing his sad face, smiled at him with egoism of happiness.
“Well, my soul,” he said, “yesterday I wanted to tell you and today I came to you for this. Never experienced anything like it. I'm in love my friend.
Pierre suddenly sighed heavily and sank down with his heavy body on the sofa, next to Prince Andrei.
- To Natasha Rostov, right? - he said.
- Yes, yes, in whom? I would never believe it, but this feeling is stronger than me. Yesterday I suffered, suffered, but I will not give up this torment for anything in the world. I haven't lived before. Now only I live, but I can't live without her. But can she love me?... I'm old for her... What don't you say?...
- I? I? What did I tell you, - Pierre suddenly said, getting up and starting to walk around the room. - I always thought this ... This girl is such a treasure, such ... This is a rare girl ... Dear friend, I ask you, do not think, do not hesitate, marry, marry and marry ... And I am sure that no one will be happier than you.
- But she!
- She loves you.
“Don’t talk nonsense ...” said Prince Andrei, smiling and looking into Pierre’s eyes.
“He loves, I know,” Pierre shouted angrily.
“No, listen,” said Prince Andrei, stopping him by the hand. Do you know what position I'm in? I need to tell everything to someone.
“Well, well, say, I’m very glad,” Pierre said, and indeed his face changed, the wrinkle smoothed out, and he joyfully listened to Prince Andrei. Prince Andrei seemed and was a completely different, new person. Where was his anguish, his contempt for life, his disappointment? Pierre was the only person before whom he dared to speak out; but on the other hand, he told him everything that was in his soul. Either he easily and boldly made plans for a long future, talked about how he could not sacrifice his happiness for the whim of his father, how he would force his father to agree to this marriage and love her or do without his consent, then he was surprised how on something strange, alien, independent of him, against the feeling that possessed him.
“I would not believe someone who would tell me that I can love like that,” said Prince Andrei. “It's not the same feeling I had before. The whole world is divided for me into two halves: one is she and there is all the happiness of hope, light; the other half - everything where it is not there, there is all despondency and darkness ...
“Darkness and gloom,” Pierre repeated, “yes, yes, I understand that.
“I can't help but love the light, it's not my fault. And I am very happy. You understand me? I know that you are happy for me.
“Yes, yes,” Pierre confirmed, looking at his friend with touching and sad eyes. The brighter the fate of Prince Andrei seemed to him, the darker his own seemed.

For marriage, the consent of the father was needed, and for this, the next day, Prince Andrei went to his father.
The father, with outward calm, but inward malice, received his son's message. He could not understand that someone wanted to change life, to bring something new into it, when life was already ending for him. “They would only let me live the way I want, and then they would do what they wanted,” the old man said to himself. With his son, however, he used the diplomacy he used on important occasions. Assuming a calm tone, he discussed the whole matter.
Firstly, the marriage was not brilliant in relation to kinship, wealth and nobility. Secondly, Prince Andrei was not the first youth and was in poor health (the old man especially leaned on this), and she was very young. Thirdly, there was a son whom it was a pity to give to a girl. Fourthly, finally, - said the father, looking mockingly at his son, - I ask you, put the matter aside for a year, go abroad, take medical treatment, find, as you like, a German, for Prince Nikolai, and then, if it’s love, passion, stubbornness, whatever you want, so great, then get married.
“And this is my last word, you know, the last ...” the prince finished in such a tone that he showed that nothing would make him change his mind.
Prince Andrei clearly saw that the old man hoped that the feeling of his or his future bride would not stand the test of the year, or that he himself, the old prince, would die by this time, and decided to fulfill his father's will: to propose and postpone the wedding for a year.
Three weeks after his last evening at the Rostovs, Prince Andrei returned to Petersburg.

The next day after her explanation with her mother, Natasha waited all day for Bolkonsky, but he did not arrive. The next day, the third day, it was the same. Pierre also did not come, and Natasha, not knowing that Prince Andrei had gone to her father, could not explain his absence to herself.
So three weeks passed. Natasha did not want to go anywhere, and like a shadow, idle and despondent, she walked around the rooms, in the evening she secretly cried from everyone and did not appear in the evenings to her mother. She was constantly blushing and irritated. It seemed to her that everyone knew about her disappointment, laughed and regretted her. With all the strength of inner grief, this vainglorious grief increased her misfortune.
One day she came to the countess, wanted to say something to her, and suddenly burst into tears. Her tears were the tears of an offended child who himself does not know why he is being punished.
The Countess began to reassure Natasha. Natasha, who at first listened to her mother's words, suddenly interrupted her:
- Stop it, mom, I don’t think, and I don’t want to think! So, I traveled and stopped, and stopped ...
Her voice trembled, she almost burst into tears, but she recovered herself and calmly continued: “And I don’t want to get married at all. And I'm afraid of him; I am now completely, completely, calmed down ...
The next day after this conversation, Natasha put on that old dress, which she was especially aware of for the cheerfulness it delivered in the morning, and in the morning she began her former way of life, from which she lagged behind after the ball. After drinking tea, she went to the hall, which she especially loved for its strong resonance, and began to sing her solfeji (singing exercises). Having finished the first lesson, she stopped in the middle of the hall and repeated one musical phrase that she especially liked. She listened joyfully to that (as if unexpected for her) charm with which these sounds, shimmering, filled the entire emptiness of the hall and slowly died away, and she suddenly became cheerful. “Why think about it so much and so well,” she said to herself, and began to walk up and down the hall, stepping not with simple steps on the resonant parquet, but at every step stepping from heel (she was wearing new, favorite shoes) to toe, and just as joyfully as to the sounds of his voice, listening to this measured clatter of heels and the creaking of socks. Passing by a mirror, she looked into it. - "Here I am!" as if the expression on her face at the sight of herself spoke. “Well, that's good. And I don't need anyone."
The footman wanted to come in to clean up something in the hall, but she did not let him in, again shutting the door behind him, and continued her walk. She returned that morning again to her beloved state of self-love and admiration for herself. - “What a charm this Natasha is!” she said again to herself in the words of some third, collective, masculine face. - "Good, voice, young, and she does not interfere with anyone, just leave her alone." But no matter how much they left her alone, she could no longer be at peace, and immediately felt it.
In the front door the entrance door opened, someone asked: are you at home? and someone's footsteps were heard. Natasha looked in the mirror, but she did not see herself. She listened to the sounds in the hallway. When she saw herself, her face was pale. It was he. She knew this for sure, although she barely heard the sound of his voice from the closed doors.
Natasha, pale and frightened, ran into the living room.
- Mom, Bolkonsky has arrived! - she said. - Mom, this is terrible, this is unbearable! “I don’t want to… suffer!” What should I do?…
The countess had not yet had time to answer her, when Prince Andrei entered the drawing room with an anxious and serious face. As soon as he saw Natasha, his face lit up. He kissed the hand of the countess and Natasha and sat down beside the sofa.
“For a long time we have not had pleasure ...” the countess began, but Prince Andrei interrupted her, answering her question and obviously in a hurry to say what he needed.
- I have not been with you all this time, because I was with my father: I needed to talk to him about a very important matter. I just got back last night,” he said, looking at Natasha. “I need to talk to you, Countess,” he added after a moment's silence.
The Countess sighed heavily and lowered her eyes.
“I am at your service,” she said.
Natasha knew that she had to leave, but she could not do it: something was squeezing her throat, and she looked impolitely, directly, with open eyes at Prince Andrei.
"Now? This minute!… No, it can't be!” she thought.
He looked at her again, and this look convinced her that she had not been mistaken. - Yes, now, this very minute her fate was being decided.
“Come, Natasha, I will call you,” said the countess in a whisper.
Natasha looked with frightened, pleading eyes at Prince Andrei and at her mother, and went out.
“I have come, Countess, to ask for the hand of your daughter,” said Prince Andrei. The countess's face flushed, but she said nothing.
“Your suggestion…” the Countess began sedately. He remained silent, looking into her eyes. - Your offer ... (she was embarrassed) we are pleased, and ... I accept your offer, I'm glad. And my husband ... I hope ... but it will depend on her ...
- I will tell her when I have your consent ... do you give it to me? - said Prince Andrew.
“Yes,” said the Countess, and held out her hand to him, and with a mixture of aloofness and tenderness pressed her lips to his forehead as he leaned over her hand. She wanted to love him like a son; but she felt that he was a stranger and a terrible person for her. “I'm sure my husband will agree,” said the countess, “but your father ...
- My father, to whom I informed my plans, made it an indispensable condition for consent that the wedding should not be earlier than a year. And this is what I wanted to tell you, - said Prince Andrei.
- It is true that Natasha is still young, but so long.
“It could not be otherwise,” Prince Andrei said with a sigh.
“I will send it to you,” said the countess, and left the room.
“Lord, have mercy on us,” she repeated, looking for her daughter. Sonya said that Natasha was in the bedroom. Natasha sat on her bed, pale, with dry eyes, looked at the icons and, quickly making the sign of the cross, whispered something. Seeing her mother, she jumped up and rushed to her.
- What? Mom?… What?
- Go, go to him. He asks for your hand, - the countess said coldly, as it seemed to Natasha ... - Go ... go, - the mother said with sadness and reproach after the fleeing daughter, and sighed heavily.
Natasha did not remember how she entered the living room. When she entered the door and saw him, she stopped. “Is this stranger really become my everything now?” she asked herself and instantly answered: “Yes, everything: he alone is now dearer to me than everything in the world.” Prince Andrei went up to her, lowering his eyes.
“I fell in love with you from the moment I saw you. Can I hope?
He looked at her, and the earnest passion of her countenance struck him. Her face said: “Why ask? Why doubt that which is impossible not to know? Why talk when you can’t express what you feel in words.
She approached him and stopped. He took her hand and kissed it.
– Do you love me?
“Yes, yes,” Natasha said as if with annoyance, sighed loudly, another time, more and more often, and sobbed.
– About what? What's wrong with you?
“Oh, I’m so happy,” she answered, smiled through her tears, leaned closer to him, thought for a second, as if asking herself if it was possible, and kissed him.
Prince Andrei held her hands, looked into her eyes, and did not find in his soul the former love for her. Something suddenly turned in his soul: there was no former poetic and mysterious charm of desire, but there was pity for her feminine and childish weakness, there was fear of her devotion and gullibility, a heavy and at the same time joyful consciousness of the duty that forever connected him with her. The real feeling, although it was not as light and poetic as the former, was more serious and stronger.

The Earth's atmosphere is the gaseous envelope of the planet. The lower boundary of the atmosphere passes near the earth's surface (the hydrosphere and the earth's crust), and the upper boundary is the area of ​​contact outer space (122 km). The atmosphere contains many different elements. The main ones are: 78% nitrogen, 20% oxygen, 1% argon, carbon dioxide, neon gallium, hydrogen, etc. Interesting facts can be viewed at the end of the article or by clicking on.

The atmosphere has distinct layers of air. Air layers differ in temperature, gas difference and their density and. It should be noted that the layers of the stratosphere and troposphere protect the Earth from solar radiation. In the higher layers, a living organism can receive a lethal dose of the ultraviolet solar spectrum. To quickly jump to the desired layer of the atmosphere, click on the corresponding layer:

Troposphere and tropopause

Troposphere - temperature, pressure, altitude

The upper limit is kept at around 8 - 10 km approximately. In temperate latitudes 16 - 18 km, and in polar 10 - 12 km. Troposphere It is the lower main layer of the atmosphere. This layer contains more than 80% of the total mass of atmospheric air and close to 90% of the total water vapor. It is in the troposphere that convection and turbulence arise, cyclones form, and occur. Temperature decreases with height. Gradient: 0.65°/100 m. The heated earth and water heat up the enclosing air. The heated air rises, cools and forms clouds. The temperature in the upper boundaries of the layer can reach -50/70 °C.

It is in this layer that changes in climatic weather conditions occur. The lower limit of the troposphere is called surface since it has a lot of volatile microorganisms and dust. Wind speed increases with height in this layer.

tropopause

This is the transitional layer of the troposphere to the stratosphere. Here, the dependence of the decrease in temperature with an increase in altitude ceases. The tropopause is the minimum height where the vertical temperature gradient drops to 0.2°C/100 m. The height of the tropopause depends on strong climatic events such as cyclones. The height of the tropopause decreases above cyclones and increases above anticyclones.

Stratosphere and Stratopause

The height of the stratosphere layer is approximately from 11 to 50 km. There is a slight change in temperature at an altitude of 11-25 km. At an altitude of 25–40 km, inversion temperature, from 56.5 rises to 0.8°C. From 40 km to 55 km the temperature stays at around 0°C. This area is called - stratopause.

In the Stratosphere, the effect of solar radiation on gas molecules is observed, they dissociate into atoms. There is almost no water vapor in this layer. Modern supersonic commercial aircraft fly at altitudes up to 20 km due to stable flight conditions. High-altitude weather balloons rise to a height of 40 km. There are steady air currents here, their speed reaches 300 km/h. Also in this layer is concentrated ozone, a layer that absorbs ultraviolet rays.

Mesosphere and Mesopause - composition, reactions, temperature

The mesosphere layer begins at about 50 km and ends at around 80-90 km. Temperatures decrease with elevation by about 0.25-0.3°C/100 m. Radiant heat exchange is the main energy effect here. Complex photochemical processes involving free radicals (has 1 or 2 unpaired electrons) since they implement glow atmosphere.

Almost all meteors burn up in the mesosphere. Scientists have named this area Ignorosphere. This zone is difficult to explore, as aerodynamic aviation here is very poor due to the air density, which is 1000 times less than on Earth. And for launching artificial satellites, the density is still very high. Research is carried out with the help of meteorological rockets, but this is a perversion. mesopause transitional layer between mesosphere and thermosphere. Has a minimum temperature of -90°C.

Karman Line

Pocket line called the boundary between the Earth's atmosphere and outer space. According to the International Aviation Federation (FAI), the height of this border is 100 km. This definition was given in honor of the American scientist Theodor von Karman. He determined that at about this height the density of the atmosphere is so low that aerodynamic aviation becomes impossible here, since the speed of the aircraft must be greater first space velocity. At such a height, the concept of a sound barrier loses its meaning. Here you can control the aircraft only due to reactive forces.

Thermosphere and Thermopause

The upper boundary of this layer is about 800 km. The temperature rises up to about 300 km, where it reaches about 1500 K. Above, the temperature remains unchanged. In this layer there is Polar Lights- occurs as a result of the effect of solar radiation on the air. This process is also called the ionization of atmospheric oxygen.

Due to the low rarefaction of the air, flights above the Karman line are possible only along ballistic trajectories. All manned orbital flights (except flights to the Moon) take place in this layer of the atmosphere.

Exosphere - Density, Temperature, Height

The height of the exosphere is above 700 km. Here the gas is very rarefied, and the process takes place dissipation— leakage of particles into interplanetary space. The speed of such particles can reach 11.2 km/sec. The growth of solar activity leads to the expansion of the thickness of this layer.

  • The gas shell does not fly away into space due to gravity. Air is made up of particles that have their own mass. From the law of gravitation, it can be concluded that every object with mass is attracted to the Earth.
  • Buys-Ballot's law states that if you are in the Northern Hemisphere and stand with your back to the wind, then there will be a high pressure zone on the right, and low pressure on the left. In the Southern Hemisphere, it will be the other way around.