The area of ​​the prism is equal. Prism

General information about a straight prism

The lateral surface of the prism (more precisely, the lateral surface area) is called sum side face areas. The total surface of the prism is equal to the sum of the lateral surface and the areas of the bases.

Theorem 19.1. The side surface of a straight prism is equal to the product of the perimeter of the base and the height of the prism, i.e., the length of the side edge.

Proof. The side faces of a straight prism are rectangles. The bases of these rectangles are the sides of the polygon lying at the base of the prism, and the heights are equal to the length of the side edges. It follows that the lateral surface of the prism is equal to

S = a 1 l + a 2 l + ... + a n l = pl,

where a 1 and n are the lengths of the ribs of the base, p is the perimeter of the base of the prism, and I is the length of the side ribs. The theorem has been proven.

Practical task

Task (22) . In an inclined prism section, perpendicular to the side edges and intersecting all side edges. Find the side surface of the prism if the perimeter of the section is p and the side edges are l.

Decision. The plane of the section drawn divides the prism into two parts (Fig. 411). Let's subject one of them to a parallel translation that combines the bases of the prism. In this case, we obtain a straight prism, in which the section of the original prism serves as the base, and the side edges are equal to l. This prism has the same side surface as the original one. Thus, the side surface of the original prism is equal to pl.

Generalization of the topic

And now let's try with you to summarize the topic of the prism and remember what properties a prism has.


Prism Properties

First, for a prism, all its bases are equal polygons;
Secondly, for a prism, all its side faces are parallelograms;
Thirdly, in such a multifaceted figure as a prism, all side edges are equal;

Also, it should be remembered that polyhedra such as prisms can be straight and inclined.

What is a straight prism?

If the side edge of a prism is perpendicular to the plane of its base, then such a prism is called a straight line.

It will not be superfluous to recall that the side faces of a straight prism are rectangles.

What is an oblique prism?

But if the side edge of the prism is not located perpendicular to the plane of its base, then we can safely say that this is an inclined prism.

What is the correct prism?



If a regular polygon lies at the base of a straight prism, then such a prism is regular.

Now let's recall the properties that a regular prism has.

Properties of a regular prism

First, regular polygons always serve as the bases of a regular prism;
Secondly, if we consider the side faces of a regular prism, then they are always equal rectangles;
Thirdly, if we compare the sizes of the side ribs, then in the correct prism they are always equal.
Fourth, a regular prism is always straight;
Fifthly, if in a regular prism the side faces are in the form of squares, then such a figure, as a rule, is called a semi-regular polygon.

Prism section

Now let's look at the cross section of a prism:



Homework

And now let's try to consolidate the studied topic by solving problems.

Let's draw an inclined triangular prism, in which the distance between its edges will be: 3 cm, 4 cm and 5 cm, and the side surface of this prism will be equal to 60 cm2. With these parameters, find the lateral edge of the given prism.

Do you know that geometric figures constantly surround us not only in geometry lessons, but also in everyday life there are objects that resemble one or another geometric figure.



Every home, school or work has a computer, the system unit of which is in the form of a straight prism.

If you pick up a simple pencil, you will see that the main part of the pencil is a prism.

Walking along the main street of the city, we see that under our feet lies a tile that has the shape of a hexagonal prism.

A. V. Pogorelov, Geometry for grades 7-11, Textbook for educational institutions

The video course "Get an A" includes all the topics necessary for the successful passing of the exam in mathematics by 60-65 points. Completely all tasks 1-13 of the Profile USE in mathematics. Also suitable for passing the Basic USE in mathematics. If you want to pass the exam with 90-100 points, you need to solve part 1 in 30 minutes and without mistakes!

Preparation course for the exam for grades 10-11, as well as for teachers. Everything you need to solve part 1 of the exam in mathematics (the first 12 problems) and problem 13 (trigonometry). And this is more than 70 points on the Unified State Examination, and neither a hundred-point student nor a humanist can do without them.

All the necessary theory. Quick solutions, traps and secrets of the exam. All relevant tasks of part 1 from the Bank of FIPI tasks have been analyzed. The course fully complies with the requirements of the USE-2018.

The course contains 5 large topics, 2.5 hours each. Each topic is given from scratch, simply and clearly.

Hundreds of exam tasks. Text problems and probability theory. Simple and easy to remember problem solving algorithms. Geometry. Theory, reference material, analysis of all types of USE tasks. Stereometry. Cunning tricks for solving, useful cheat sheets, development of spatial imagination. Trigonometry from scratch - to task 13. Understanding instead of cramming. Visual explanation of complex concepts. Algebra. Roots, powers and logarithms, function and derivative. Base for solving complex problems of the 2nd part of the exam.

Different prisms are different from each other. At the same time, they have a lot in common. To find the area of ​​\u200b\u200bthe base of a prism, you need to figure out what kind it looks like.

General theory

A prism is any polyhedron whose sides have the form of a parallelogram. Moreover, any polyhedron can be at its base - from a triangle to an n-gon. Moreover, the bases of the prism are always equal to each other. What does not apply to the side faces - they can vary significantly in size.

When solving problems, it is not only the area of ​​\u200b\u200bthe base of the prism that is encountered. It may be necessary to know the lateral surface, that is, all faces that are not bases. The full surface will already be the union of all the faces that make up the prism.

Sometimes heights appear in tasks. It is perpendicular to the bases. The diagonal of a polyhedron is a segment that connects in pairs any two vertices that do not belong to the same face.

It should be noted that the area of ​​the base of a straight or inclined prism does not depend on the angle between them and the side faces. If they have the same figures in the upper and lower faces, then their areas will be equal.

triangular prism

It has at the base a figure with three vertices, that is, a triangle. It is known to be different. If then it is enough to recall that its area is determined by half the product of the legs.

Mathematical notation looks like this: S = ½ av.

To find out the area of ​​\u200b\u200bthe base in a general form, the formulas are useful: Heron and the one in which half of the side is taken to the height drawn to it.

The first formula should be written like this: S \u003d √ (p (p-a) (p-in) (p-s)). This entry contains a semi-perimeter (p), that is, the sum of three sides divided by two.

Second: S = ½ n a * a.

If you want to know the area of ​​\u200b\u200bthe base of a triangular prism, which is regular, then the triangle turns out to be equilateral. It has its own formula: S = ¼ a 2 * √3.

quadrangular prism

Its base is any of the known quadrilaterals. It can be a rectangle or a square, a parallelepiped or a rhombus. In each case, in order to calculate the area of ​​\u200b\u200bthe base of the prism, you will need your own formula.

If the base is a rectangle, then its area is determined as follows: S = av, where a, b are the sides of the rectangle.

When it comes to a quadrangular prism, the base area of ​​a regular prism is calculated using the formula for a square. Because it is he who lies at the base. S \u003d a 2.

In the case when the base is a parallelepiped, the following equality will be needed: S \u003d a * n a. It happens that a side of a parallelepiped and one of the angles are given. Then, to calculate the height, you will need to use an additional formula: na \u003d b * sin A. Moreover, the angle A is adjacent to the side "b", and the height is na opposite to this angle.

If a rhombus lies at the base of the prism, then the same formula will be needed to determine its area as for a parallelogram (since it is a special case of it). But you can also use this one: S = ½ d 1 d 2. Here d 1 and d 2 are two diagonals of the rhombus.

Regular pentagonal prism

This case involves splitting the polygon into triangles, the areas of which are easier to find out. Although it happens that the figures can be with a different number of vertices.

Since the base of the prism is a regular pentagon, it can be divided into five equilateral triangles. Then the area of ​​\u200b\u200bthe base of the prism is equal to the area of ​​​​one such triangle (the formula can be seen above), multiplied by five.

Regular hexagonal prism

According to the principle described for a pentagonal prism, it is possible to divide the base hexagon into 6 equilateral triangles. The formula for the area of ​​​​the base of such a prism is similar to the previous one. Only in it should be multiplied by six.

The formula will look like this: S = 3/2 and 2 * √3.

Tasks

No. 1. A regular straight line is given. Its diagonal is 22 cm, the height of the polyhedron is 14 cm. Calculate the area of ​​\u200b\u200bthe base of the prism and the entire surface.

Decision. The base of a prism is a square, but its side is not known. You can find its value from the diagonal of the square (x), which is related to the diagonal of the prism (d) and its height (h). x 2 \u003d d 2 - n 2. On the other hand, this segment "x" is the hypotenuse in a triangle whose legs are equal to the side of the square. That is, x 2 \u003d a 2 + a 2. Thus, it turns out that a 2 \u003d (d 2 - n 2) / 2.

Substitute the number 22 instead of d, and replace “n” with its value - 14, it turns out that the side of the square is 12 cm. Now it’s easy to find out the base area: 12 * 12 \u003d 144 cm 2.

To find out the area of ​​\u200b\u200bthe entire surface, you need to add twice the value of the base area and quadruple the side. The latter is easy to find by the formula for a rectangle: multiply the height of the polyhedron and the side of the base. That is, 14 and 12, this number will be equal to 168 cm 2. The total surface area of ​​the prism is found to be 960 cm 2 .

Answer. The base area of ​​the prism is 144 cm2. The entire surface - 960 cm 2 .

No. 2. Dana At the base lies a triangle with a side of 6 cm. In this case, the diagonal of the side face is 10 cm. Calculate the areas: the base and the side surface.

Decision. Since the prism is regular, its base is an equilateral triangle. Therefore, its area turns out to be equal to 6 squared times ¼ and the square root of 3. A simple calculation leads to the result: 9√3 cm 2. This is the area of ​​one base of the prism.

All side faces are the same and are rectangles with sides of 6 and 10 cm. To calculate their areas, it is enough to multiply these numbers. Then multiply them by three, because the prism has exactly so many side faces. Then the area of ​​the side surface is wound 180 cm 2 .

Answer. Areas: base - 9√3 cm 2, side surface of the prism - 180 cm 2.

In the school curriculum for the course of solid geometry, the study of three-dimensional figures usually begins with a simple geometric body - a prism polyhedron. The role of its bases is performed by 2 equal polygons lying in parallel planes. A special case is a regular quadrangular prism. Its bases are 2 identical regular quadrangles, to which the sides are perpendicular, having the shape of parallelograms (or rectangles if the prism is not inclined).

What does a prism look like

A regular quadrangular prism is a hexagon, at the bases of which there are 2 squares, and the side faces are represented by rectangles. Another name for this geometric figure is a straight parallelepiped.

The figure, which depicts a quadrangular prism, is shown below.

You can also see in the picture the most important elements that make up a geometric body. They are commonly referred to as:

Sometimes in problems in geometry you can find the concept of a section. The definition will sound like this: a section is all points of a volumetric body that belong to the cutting plane. The section is perpendicular (crosses the edges of the figure at an angle of 90 degrees). For a rectangular prism, a diagonal section is also considered (the maximum number of sections that can be built is 2), passing through 2 edges and the diagonals of the base.

If the section is drawn in such a way that the cutting plane is not parallel to either the bases or the side faces, the result is a truncated prism.

Various ratios and formulas are used to find the reduced prismatic elements. Some of them are known from the course of planimetry (for example, to find the area of ​​the base of a prism, it is enough to recall the formula for the area of ​​a square).

Surface area and volume

To determine the volume of a prism using the formula, you need to know the area of ​​\u200b\u200bits base and height:

V = Sprim h

Since the base of a regular tetrahedral prism is a square with side a, You can write the formula in a more detailed form:

V = a² h

If we are talking about a cube - a regular prism with equal length, width and height, the volume is calculated as follows:

To understand how to find the lateral surface area of ​​a prism, you need to imagine its sweep.

It can be seen from the drawing that the side surface is made up of 4 equal rectangles. Its area is calculated as the product of the perimeter of the base and the height of the figure:

Sside = Pos h

Since the perimeter of a square is P = 4a, the formula takes the form:

Sside = 4a h

For cube:

Sside = 4a²

To calculate the total surface area of ​​a prism, add 2 base areas to the side area:

Sfull = Sside + 2Sbase

As applied to a quadrangular regular prism, the formula has the form:

Sfull = 4a h + 2a²

For the surface area of ​​a cube:

Sfull = 6a²

Knowing the volume or surface area, you can calculate the individual elements of a geometric body.

Finding prism elements

Often there are problems in which the volume is given or the value of the lateral surface area is known, where it is necessary to determine the length of the side of the base or the height. In such cases, formulas can be derived:

  • base side length: a = Sside / 4h = √(V / h);
  • height or side rib length: h = Sside / 4a = V / a²;
  • base area: Sprim = V / h;
  • side face area: Side gr = Sside / 4.

To determine how much area a diagonal section has, you need to know the length of the diagonal and the height of the figure. For a square d = a√2. Therefore:

Sdiag = ah√2

To calculate the diagonal of the prism, the formula is used:

dprize = √(2a² + h²)

To understand how to apply the above ratios, you can practice and solve a few simple tasks.

Examples of problems with solutions

Here are some of the tasks that appear in the state final exams in mathematics.

Exercise 1.

Sand is poured into a box shaped like a regular quadrangular prism. The height of its level is 10 cm. What will the level of sand be if you move it into a container of the same shape, but with a base length 2 times longer?

It should be argued as follows. The amount of sand in the first and second containers did not change, i.e., its volume in them is the same. You can define the length of the base as a. In this case, for the first box, the volume of the substance will be:

V₁ = ha² = 10a²

For the second box, the length of the base is 2a, but the height of the sand level is unknown:

V₂ = h(2a)² = 4ha²

Insofar as V₁ = V₂, the expressions can be equated:

10a² = 4ha²

After reducing both sides of the equation by a², we get:

As a result, the new sand level will be h = 10 / 4 = 2.5 cm.

Task 2.

ABCDA₁B₁C₁D₁ is a regular prism. It is known that BD = AB₁ = 6√2. Find the total surface area of ​​the body.

To make it easier to understand which elements are known, you can draw a figure.

Since we are talking about a regular prism, we can conclude that the base is a square with a diagonal of 6√2. The diagonal of the side face has the same value, therefore, the side face also has the shape of a square equal to the base. It turns out that all three dimensions - length, width and height - are equal. We can conclude that ABCDA₁B₁C₁D₁ is a cube.

The length of any edge is determined through the known diagonal:

a = d / √2 = 6√2 / √2 = 6

The total surface area is found by the formula for the cube:

Sfull = 6a² = 6 6² = 216


Task 3.

The room is being renovated. It is known that its floor has the shape of a square with an area of ​​9 m². The height of the room is 2.5 m. What is the lowest cost of wallpapering a room if 1 m² costs 50 rubles?

Since the floor and ceiling are squares, that is, regular quadrilaterals, and its walls are perpendicular to horizontal surfaces, we can conclude that it is a regular prism. It is necessary to determine the area of ​​its lateral surface.

The length of the room is a = √9 = 3 m.

The square will be covered with wallpaper Sside = 4 3 2.5 = 30 m².

The lowest cost of wallpaper for this room will be 50 30 = 1500 rubles.

Thus, to solve problems for a rectangular prism, it is enough to be able to calculate the area and perimeter of a square and a rectangle, as well as to know the formulas for finding the volume and surface area.

How to find the area of ​​a cube















Prism. Parallelepiped

prism is called a polyhedron whose two faces are equal n-gons (grounds) , lying in parallel planes, and the remaining n faces are parallelograms (side edges) . Side rib prism is the side of the lateral face that does not belong to the base.

A prism whose lateral edges are perpendicular to the planes of the bases is called straight prism (Fig. 1). If the side edges are not perpendicular to the planes of the bases, then the prism is called oblique . Correct A prism is a straight prism whose bases are regular polygons.

Height prism is called the distance between the planes of the bases. Diagonal A prism is a segment connecting two vertices that do not belong to the same face. diagonal section A section of a prism by a plane passing through two side edges that do not belong to the same face is called. Perpendicular section called the section of the prism by a plane perpendicular to the lateral edge of the prism.

Side surface area prism is the sum of the areas of all side faces. Full surface area the sum of the areas of all the faces of the prism is called (i.e., the sum of the areas of the side faces and the areas of the bases).

For an arbitrary prism, the formulas are true:

where l is the length of the side rib;

H- height;

P

Q

S side

S full

S main is the area of ​​the bases;

V is the volume of the prism.

For a straight prism, the following formulas are true:

where p- the perimeter of the base;

l is the length of the side rib;

H- height.

Parallelepiped A prism whose base is a parallelogram is called. A parallelepiped whose lateral edges are perpendicular to the bases is called direct (Fig. 2). If the side edges are not perpendicular to the bases, then the parallelepiped is called oblique . A right parallelepiped whose base is a rectangle is called rectangular. A rectangular parallelepiped in which all edges are equal is called cube.

The faces of a parallelepiped that do not have common vertices are called opposite . The lengths of edges emanating from one vertex are called measurements parallelepiped. Since the box is a prism, its main elements are defined in the same way as they are defined for prisms.

Theorems.

1. The diagonals of the parallelepiped intersect at one point and bisect it.

2. In a rectangular parallelepiped, the square of the length of the diagonal is equal to the sum of the squares of its three dimensions:

3. All four diagonals of a rectangular parallelepiped are equal to each other.

For an arbitrary parallelepiped, the following formulas are true:

where l is the length of the side rib;

H- height;

P is the perimeter of the perpendicular section;

Q– Area of ​​perpendicular section;

S side is the lateral surface area;

S full is the total surface area;

S main is the area of ​​the bases;

V is the volume of the prism.

For a right parallelepiped, the following formulas are true:

where p- the perimeter of the base;

l is the length of the side rib;

H is the height of the right parallelepiped.

For a rectangular parallelepiped, the following formulas are true:

(3)

where p- the perimeter of the base;

H- height;

d- diagonal;

a,b,c– measurements of a parallelepiped.

The correct formulas for a cube are:

where a is the length of the rib;

d is the diagonal of the cube.

Example 1 The diagonal of a rectangular cuboid is 33 dm, and its measurements are related as 2:6:9. Find the measurements of the cuboid.

Decision. To find the dimensions of the parallelepiped, we use formula (3), i.e. the fact that the square of the hypotenuse of a cuboid is equal to the sum of the squares of its dimensions. Denote by k coefficient of proportionality. Then the dimensions of the parallelepiped will be equal to 2 k, 6k and 9 k. We write formula (3) for the problem data:

Solving this equation for k, we get:

Hence, the dimensions of the parallelepiped are 6 dm, 18 dm and 27 dm.

Answer: 6 dm, 18 dm, 27 dm.

Example 2 Find the volume of an inclined triangular prism whose base is an equilateral triangle with a side of 8 cm, if the lateral edge is equal to the side of the base and is inclined at an angle of 60º to the base.

Decision . Let's make a drawing (Fig. 3).

In order to find the volume of an inclined prism, you need to know the area of ​​\u200b\u200bits base and height. The area of ​​the base of this prism is the area of ​​an equilateral triangle with a side of 8 cm. Let's calculate it:

The height of a prism is the distance between its bases. From the top BUT 1 of the upper base we lower the perpendicular to the plane of the lower base BUT 1 D. Its length will be the height of the prism. Consider D BUT 1 AD: since this is the angle of inclination of the side rib BUT 1 BUT to the base plane BUT 1 BUT= 8 cm. From this triangle we find BUT 1 D:

Now we calculate the volume using formula (1):

Answer: 192 cm3.

Example 3 The lateral edge of a regular hexagonal prism is 14 cm. The area of ​​\u200b\u200bthe largest diagonal section is 168 cm 2. Find the total surface area of ​​the prism.

Decision. Let's make a drawing (Fig. 4)


The largest diagonal section is a rectangle AA 1 DD 1 , since the diagonal AD regular hexagon ABCDEF is the largest. In order to calculate the lateral surface area of ​​a prism, it is necessary to know the side of the base and the length of the lateral rib.

Knowing the area of ​​the diagonal section (rectangle), we find the diagonal of the base.

Because , then

Since then AB= 6 cm.

Then the perimeter of the base is:

Find the area of ​​the lateral surface of the prism:

The area of ​​a regular hexagon with a side of 6 cm is:

Find the total surface area of ​​the prism:

Answer:

Example 4 The base of a right parallelepiped is a rhombus. The areas of diagonal sections are 300 cm 2 and 875 cm 2. Find the area of ​​the side surface of the parallelepiped.

Decision. Let's make a drawing (Fig. 5).

Denote the side of the rhombus by a, the diagonals of the rhombus d 1 and d 2 , the height of the box h. To find the lateral surface area of ​​a straight parallelepiped, it is necessary to multiply the perimeter of the base by the height: (formula (2)). Base perimeter p = AB + BC + CD + DA = 4AB = 4a, as ABCD- rhombus. H = AA 1 = h. That. Need to find a and h.

Consider diagonal sections. AA 1 SS 1 - a rectangle, one side of which is the diagonal of a rhombus AC = d 1 , second - side edge AA 1 = h, then

Similarly for the section BB 1 DD 1 we get:

Using the property of a parallelogram such that the sum of the squares of the diagonals is equal to the sum of the squares of all its sides, we get the equality We get the following.