Для бактериологического исследования воздуха используют. Микробиологический анализ воздуха. Гравитационный метод отбора

Страница 87 из 91

Количественный и особенно качественный состав микрофлоры воздуха является санитарным показателем степени загрязнения воздушной среды.
Для оценки степени чистоты воздуха А. И. Шафир предложил следующие критерии. В жилых невентилируемых помещениях в летнее время воздух может считаться чистым при условии, если общее количество микроорганизмов в 1 м3 воздуха будет меньше 1500, а зеленящего и гемолитического стрептококка меньше 16, а загрязненным, если содержит больше 2500 микроорганизмов и больше 36 стрептококков. Зимой, естественно, количество микроорганизмов в помещениях значительно увеличивается. По данным. А. И. Шафира, для чистого воздуха общее количество микробов будет меньше 4500, а стрептококков меньше 36 в 1 м3, для загрязненного - общее количество микробов больше 7000, а стрептококков больше 124.
Для определения степени чистоты воздуха применяются следующие микробиологические методы исследования.

  1. Метод, основанный на принципе ударного действия воздушной струи.
  2. Седиментационный метод.

При любом микробиологическом методе исследования воздуха учитывается как общее количество микроорганизмов в определенном объеме воздуха, так и их качественный состав. Отдельно учитывается аэробная и анаэробная микрофлора.
Для выявления аэробных сапрофитов в воздухе посев производится на мясо-пептонный агар, а при исследовании на наличие стрепто- и стафилококков воздух засевают на специальные среды (сахарный агар, кровяной агар). Для выделения и подсчета стафило- и стрептококков применяют также мясо-пептонный агар с добавлением 3% дефибринированной бараньей крови, 0,25% глюкозы и генцианвиолета 1: 50 000-1: 500 000.
Для исследования на наличие анаэробных микробов воздух засевают на железосульфитную среду (среда Вильсон-Блера). Эту среду готовят следующим образом. К 100 мл расплавленного, а затем остуженного до 80° щелочного мясо-пептонного агара добавляют 1% стерильной глюкозы, 10 мл 20% сернокислого натрия и 1 мл 8% раствора хлорного железа. Раствор хлорного железа готовится на стерильной дистиллированной воде. Раствор сернокислого натрия стерилизуется 1 час текучим паром.
Метод исследования воздуха по принципу ударной струи. Предложен ряд аппаратов для исследования воздуха методом ударной струи. Аппарат, сконструированный советским ученым Ю. А. Кротовым, имеет преимущество перед другими (рис. 124, 125).
Аппарат Кротова смонтирован в одном ящике и состоит из трех частей: 1) узла для отбора проб воздуха; 2) микроманометра; 3) питающего механизма, размещенного в деревянном футляре (электрической части).

Прибор можно подключить как на 127 V, так и на 220 V, и при помощи специального переключателя и реостата регулировать скорость проходящей через прибор струи воздуха. При помощи аппарата Кротова в течение 1 минуты можно пропустить от 25 до 50 л воздуха. Механизм действия аппарата Кротова заключается в следующем. Исследуемый воздух при помощи центробежного вентилятора, вращающегося со скоростью 4000- 5000 оборотов в минуту, энергично, засасывается через щель крышки прибора и ударяется о поверхность открытой чашки Гейденрейха, залитой питательным агаром и установленной на диске малой крыльчатки. Содержащиеся в воздухе микроорганизмы оседают на питательном агаре чашки Гейденрейха.

Рис. 124. Прибор Кротова для микробиологического исследования воздуха (общий вид).


Рис: 125. Прибор Кротова для микробиологического исследования воздуха (схема).
1 - цилиндрический корпус; 2 - основание корпуса; 3 - электромотор; 4 - центробежный вентилятор; 5 - восьмилопастная крыльчатка; 6 - диск; 7 - пружины; 8 - чашка Гейденрейха; 9 - крышки; 10 - накидные замки; 11 - диск из плексигласа; 12 - клиновидная щель; 13 - разрезное кольцо; 14 - штуцер с диафрагмой; 15 - выводная трубка.

Для равномерного распределения микроорганизмов по всей поверхности чашки столик с чашкой должен вращаться не очень быстро (60 оборотов в минуту). Из прибора воздух выводится через воздухопроводную трубку, которая соединена с микроманометром, показывающим скорость пропускания воздуха через прибор. Экспозиция чашки 10 минут, после чего мотор останавливают. Снимают крышку прибора. Достают чашку с посевом воздуха и закрывают ее крышкой. Дальше поступают так. При определении аэробной флоры чашку Гейденрейха с посевом ставят на 24 часа в термостат при температуре 37°, а затем оставляют на 24 часа при комнатной температуре и проводят подсчет всех выросших колоний на поверхности агара. Затем чашку оставляют еще на 24 часа при комнатной температуре, после чего (через 72 часа с момента посева) проводят дифференцированный подсчет, т. е. учитывают отдельно пигментные формы, спороносные формы и плесневые грибы.
Для определения количества анаэробных микроорганизмов чашку с посевом, вынутую из прибора Кротова, для создания анаэробных условий роста микробов дополнительно заливают 10-15 мл мясо-пептонного агара и ставят в термостат при температуре 37° на 24 часа.
На сульфитном агаре, которым залита чашка до посева, анаэробные микробы дадут рост в виде почерневших колоний, по числу которых можно судить о степени загрязнения воздуха анаэробными микробами.
Бактериальное загрязнение воздуха выражается общим числом микробов в 1 м3 его.
Пример. Через аппарат Кротова пропущено за 10 минут 125 л воздуха, на поверхности среды выросло 100 колоний.
Число микробов в 1 м3 воздуха
Седиментационный метод исследования воздуха (чашечный метод). Седиментационный метод является наиболее простым методом для изучения микрофлоры воздуха, хотя не обладает большой точностью.
Если применять чашки одного диаметра при одном сроке экспозиции, то этот метод может быть использован для получения сравнительных данных по бактериальному загрязнению воздуха. Техника этого метода заключается в следующем. Чашки Гейденрейха-Петри с застывшим агаром выставляют в открытом виде на разных высотах в помещении на различные сроки (от 15 минут
до 1.5 часов). Затем чашки закрывают и ставят в термостат. Инкубацию посевов производят по методике, описанной выше.
Для пересчета количества микробов на 1 м3 пользуются формулой В. Л. Омелянского, который считал, что в течение 10-минутной экспозиции на поверхность плотной питательной среды 100 см2 оседает столько микробов, сколько их находится в 10 л воздуха. Им была составлена соответствующая таблица расчета, пользуясь которой можно высчитать общее количество микроорганизмов в 1 м3 воздуха. В этой таблице даны постоянные множители, на которые надо умножить полученные количества колоний в зависимости от диаметра и площади чашки, где производится посев. Приводим схему постоянных множителей для расчета количества микробов по Омелянскому (табл. 34).
Таблица 34
Расчет числа микробов в 1 м3 воздуха (по Омелянскому)


Диаметр чашки в см

Площадь чашки в см2

Множитель расчета числа микробов в 1 м3 воздуха

Пример. На чашке площадью 63 см2 выросло 25 колоний. Количество микробов в 1 м3 воздуха в данном случае равно 25X80 = 2000.

Воздух - особый объект окружающей среды, визуально не определяемый, поэтому отбор проб его имеет некоторые особенности. Для гигиенической оценки бактериального загрязнения воздуха необходимо знать, какое количество воздуха контактировало с питательной средой, т.к. нормативы регламентируют определенное количество колоний микроорганизмов, вырастающих при посеве 1 м 3 (1000 л) воздуха.

В зависимости от принципа улавливания микроорганизмов выделяют следующие методы отбора проб воздуха для бактериологического исследования:

Седиментационный;

Фильтрационный;

Основанный на принципе ударного действия воздушной струи. Наиболее простым является седиментационный метод (метод осаждения), который позволяет уловить самопроизвольно оседающую фракцию микробного аэрозоля. Посев производят на чашки Петри с плотной питательной средой, которые расставляют в нескольких местах помещения и оставляют открытыми на 5-10 минут, затем инкубируют 48 часов при 37 °С и подсчитывают количество выросших колоний.

Этот метод не требует использования аппаратуры при посеве, но его недостатком является низкая информативность, т. к. невозможно получить точные данные о количестве микроорганизмов вследствие того, что их оседание происходит самопроизвольно, а его интенсивность зависит от направления и скорости потоков воздуха. Кроме того, неизвестен объем воздуха, контактирующего с питательной средой. При этом методе плохо улавливаются мелкодисперсные фракции бактериального аэрозоля, поэтому седиментационный метод рекомендуется использовать только для получения сравнительных данных о чистоте воздуха помещений в различное время суток, а также для оценки эффективности проведения санитарно-гигиенических мероприятий (вентиляции, влажной уборки, облучения ультрафиолетовыми лампами и др.).

Фильтрационный метод посева воздуха заключается в пропускании определенного объема воздуха через жидкую питательную среду. Самым простым является способ Дьяконова, при котором воздух (10-12 л) пропускают с помощью электроаспиратора через склянку Дрекселя, заполненную стерильным физиологическим раствором. Затем из склянки отбирают 0,1-1 мл физиологического раствора и делают посев на чашку Петри с плотной питательной средой. После инкубации подсчитывают выросшие колонии и делают пересчет на 1 м 3 воздуха.

Принцип ударного действия воздушной струи нашел реализацию в приборе Кротова. В основании цилиндрического корпуса прибора установлен электромотор с центробежным вентилятором, а в верхней части размещен вращающийся диск, на который устанавливается чашка Петри с плотной стерильной питательной средой. Корпус прибора герметически закрывается крышкой с радиально расположенной клиновидной щелью, через которую аспирируемый вентилятором воздух поступает внутрь, струя воздуха ударяется об агар, в результате чего к нему прилипают частицы микробного аэрозоля. Вращение диска с чашкой Петри при включении прибора в сеть и клиновидная форма щели обеспечивают равномерный посев по поверхности агара.

Для учета количества воздуха, прошедшего через прибор, на его передней наружной поверхности установлен реометр, позволяющий регулировать скорость аспирации воздуха от 20 до 40 литров в минуту. Зная время (продолжительность) отбора пробы и скорость пропускания воздуха, определяя количество аспирированного воздуха. На конечном этапе пересчитывают величину бактериального загрязнения воздуха на 1 м 3 .

Выработка у студентов навыков организации и проведения профилактических (гигиенических) мероприятий, ведения и пропаганды здорового образа жизни, умений использовать факторы окружающей среды, в данном случае физические свойства воздуха (химический состав воздуха), в оздоровительных целях, основана на осознанном понимании связи здоровья человека с окружающей средой, факторами и условиями жизни, трудовой деятельностью, поэтому студенты должны владеть информацией по освоению методологии профилактической медицины, приобрести гигиенические знания и умения по оценке влияния факторов среды обитания на здоровье человека и населения. Тема: « Санитарно-гигиеническая оценка микроклимата помещений (химический состав воздуха)» раскрывает вопросы, связанные с основными понятиями микроклимата, факторами их определяющими и регулирующими. Гигиенические требования к химическому составу воздуха закрытых помещений. Показатели, нормативы.

При отборе пробы воздуха на определение уровня микробного загрязнения необходимо придерживаться таких обязательных условий: пробу воздуха берут не раньше, чем через 30 мин после уборки помещения, при этом должны быть закрыты форточки, двери, высота взятия пробы должна отвечать высоте рабочего стола. Осуществлять контроль необходимо в стерильной технологической одежде из безворсой ткани и в перчатках.

Перед подачей прибора в «чистое» помещение его необходимо протереть салфеткой из безворсой ткани с обработанными краями, смоченной спиртом этиловым 76 %. Передача прибора в производственные помещения 1 и 2 классов и, желательно, 3 класса чистоты должна осуществляться через воздушный шлюз для материалов. Контроль чистоты воздух должен проводиться не реже 2 раз в неделю перед началом и во время производственного процесса в рекомендованных точках.

Определение микробного загрязнения воздуха помещений методом седиментаци заключается в седиментации (оседании) микрофлоры (находящейся в воздухе), под действием силы тяжести, на поверхность питательной среды.

Этот метод используют для ориентировочной оценки микробной контаминации воздуха производственных помещений, преимущественно в помещениях с повышенным загрязнением воздуха и в тех случаях, когда невозможно исследование аспирационным методом (при использовании в производстве огнеопасных или взрывоопасных веществ).

В производственных помещениях контроль содержимого микроорганизмов проводят преимущественно в тех рабочих зонах, где находятся наиболее вероятные источники микробной контаминации воздуха (места с большим количеством персонала, повышенным риском образования пыли и т.д.), а также в зонах, где субстанции, вспомогательные вещества и готовый продукт непосредственно контактируют с окружающей средой.

Посев осуществляют на открытые чашки Петри с мясо-пептонным агаром (для определения количества бактерий) и в отдельности с агаром Сабуро (для определения количества грибков). Чашки расставляют в нескольких местах помещений: в длинных и узких — в 4 точках по горизонтали на расстоянии не более 5 м одна от другой; в помещениях площадью до 15 м2 — в двух противоположных точках помещения; больше 100 м2 — в каждой из 4 противоположных точек и в центре помещения. После 10 мин экспозиции в открытом состоянии чашки закрывают и помещают в термостат.

Посевы на мясо-пептонном агаре инкубируют при температуре 32,5 ± 2,5 °С, на агаре Сабуро — при 22,5 ± 2,5 ° С в течении 5 суток.

Учет результатов исследования . Для определения общего количества бактерий (грибков) в 1 м3 воздуха число выросших колоний на чашке умножают на один из множителей, представленных в таблице «расчет количества микроорганизмов в 1 м3воздуха при 10 мин экспозиции»:

Диаметр чашки, см

Площадь чашки, см2

Множитель

Н-р: на чашке диаметром 10 см выросло 50 колоний бактерий. В перерассчете на 1 м3 воздуха общее количество бактерий составляет 50 х 60 = 3000.

Однако этот метод не дает полного представления о количественном содержании микроорганизмов. Это связано с тем, что оседание микроорганизмов зависит от скорости движения воздуха, которая может отличаться в разных точках помещения. Кроме того, при использовании этого метода плохо улавливаются мелкодисперсные фракции бактериального аэрозоля и при высеве одной частицы аэрозоля, который содержит несколько жизнеспособных микроорганизмов, вырастает только одна колония, которая снижает показатели общего микробного загрязнения воздуха.

Поэтому седиментационный метод является приблизительным относительно оценки реальной степени микробной контаминации воздуха помещений. Тем не менее, он может служить для определения микробной контаминации воздуха в динамике, для оценки эффективности проводимых противоэпидемических мероприятий.

Определение микробного загрязнения воздуха аспирационным методом осуществляют с помощью пробозаборников инерционного типа — импактора или прибора для бактериологического анализа воздуха (щелевой аппарат Кротова, отсюда еще одно название метода: щелевой метод улавливания бактерий). В основу действия прибора положен принцип удара струи воздуха о поверхность питательной среды, которая помещается в чашке Петри.

При использовании аппарата Кротова воздух с помощью центробежного вентилятора всасывается через клиновидную щель, расположенную по радиусу над чашкой Петри. Диск, на котором закреплена чашка Петри, вращается со скоростью 1 оборот/сек, вследствие чего посев микроорганизмов происходит равномерно по всей поверхности питательной среды.

Местоположениеи количество точек взятия проб воздуха определяют в зависимости от размеров помещения (см. метод седиментации).

Чашку Петри с питательной средой помещают на диск прибора, тщательно закрывают крышку с помощью зажимов, установленных на его корпусе. Прибор включают в сеть, с помощью реометра устанавливают скорость движения воздуха — 25 или 40 л/мин. В среднем пробу воздуха отбирают в течение 5 мин со скоростью 40 л/мин.

После взятия пробы воздуха (из каждой определенной точки на две параллельные чашки Петри с МПА и средой Сабуро), чашки закрывают крышками и помещают в термостат. Питательные среды, температурный режим и время инкубации посевов такие же, как при исследовании воздуха методом седиментации (см. выше).

Учет результатов . Расчет осуществляют по формуле:

Х= а х 1000 / в, где X — число микроорганизмов в 1 м3 воздуха; а — количество колоний, которые выросли на чашке Петри после срока инкубации; в — объем исследуемой пробы воздуха, приведенный к нормальным условиям (см. формулу приведения объема воздуха к нормальным условиям для аспирационного метода).

Еще один метод рассчета: подсчитывают количество колоний грибков и бактерий, которые выросли на параллельных чашках, определяют среднее арифметическое и умножают его на 5.

Полученные результаты сравнивают с допустимыми границами микробной контаминации воздуха данного помещения по соответствующим таблицам: «классификация производственных помещений по допустимому содержанию микроорганизмов и механических частиц в воздухе для производства стерильной продукции» и «классификация помещений производства нестерильных лекарственных препаратов по мах допустимому количеству частиц и микроорганизмов в воздухе».

Расчет минимального суммарного объема пробы воздуха в каждой контрольной точке осуществляют в соответствии с методическими рекомендациями по контролю содержания микроорганизмов и частиц в воздухе производственных помещений (Приказ МОЗ Украины от 14 декабря 2001 г. № 502).

Развитие исследований в области аэробиологии показало, что в воздухе закрытых помещений наряду с большим количеством сапрофитных микроорганизмов могут находиться патогенные бактерии и вирусы; менингококки, патогенные стафилококки, возбудители дифтерии, туберкулеза, коклюша, вирусы гриппа, оспы, аденовирусы и др. Санитарно-бактериологические исследования воздуха проводят в плановом порядке в яслях и детских садах, больницах, операционных, аптеках, школах, кинотеатрах. Исследуют также атмосферный воздух.

При санитарно-бактериологическом исследовании воздуха проводят:

1) определение общей бактериальной обсемененности воздуха (общее число бактерий в 1 м 3);

2) выявление саиитарно-показательных микроорганизмов;

3) по эпидемическим показаниям выделение вирусов и патогенных бактерий из воздуха закрытых помещений;

4) при исследовании атмосферного воздуха дополнительное определение качественного состава микрофлоры с учетом наличия спорообразующих аэробов и анаэробов, которые служат показателем загрязненности воздуха микроорганизмами почвы.

Методы отбора проб воздуха для бактериологического исследования подразделяют на:

1) аспирационные, основанные на активном просасывании воздуха с помощью различных приборов;

2) седиментационные, основанные на принципе механического оседания микробов.

Пробы воздуха берут на уровне сидящего или стоящего человека, выделяя одну точку взятия проб на каждые 20 м 2 площади.

Аспирационные методы используют при исследовании воздуха как закрытых помещений, так и атмосферного. Наиболее широкое применение в последние годы получил аппарат Кротова (рис. 44), который позволяет пропускать от 25 до 50 л воздуха в минуту. В аппарате Кротова воздух засасывается сквозь узкую щель крышки прибора и ударяется о поверхность плотной питательной среды в чашке Петри, которая медленно вращается на подвижном столике. Поверхность питательной среды равномерно обсеменяется микроорганизмами.

Существуют также другие приборы: ПОВ-1, бактериоуловител Речменского, Дьяконова, в которых воздух просасывается с помощью насосов, воздуходувок, аспираторов через материал, задерживающий бактериальный аэрозоль. В качестве такого материала используют стерильную воду, питательные среды, стерильный ватный тампон, пенистые или порошковые фильтры из растворимых материалов. Объем просасываемого воздуха измеряют с помощью газовых часов. После взятия пробы 1 мл жидкости засевают в чашку с мясо-пептонным агаром для определения общего числа бактерий. Через 24 ч инкубации в термостате при 37°С подсчитывают число колоний и делают пересчет на 1 м 3 воздуха. С целью определения санитарно-показательных микроорганизмов и патогенных микробов делают посевы на различные элективные среды.

Седиментационный метод наиболее старый (метод оседания Коха). Его используют только при исследовании воздуха закрытых помещений. Для этого чашки Петри с питательными средами при исследовании общей бактериальной загрязненности воздуха оставляют открытыми в местах отбора проб в течение 5—10 мин. По окончании экспозиции чашки зарывают и помещаю в термостат при 37°С на 24 ч, а затем при комнатной температуре выдерживает еще сутки. О степени загрязненности воздуха судят по количеству выросших колоний. Несмотря на неточность, данный метод пригоден для сравнительных оценок чистоты воздуха.

В настоящее время бактериологическое исследование воздуха проводится в основном в больницах согласно «Инструкции по бактериологическому контролю комплекса санитарно-гигиенических мероприятий в лебечно-профилактических учреждениях: отделениях хирургического профиля, в палатах и отделениях реанимации и интенсивной терапии» (Приложение к приказу № 720 от 31.07.1978 г. МЗ СССР). Определяют общую бактериальную обсемененность и наличие Staph, aureus.

Для установления общей бактериальной обсемененности воздуха закрытых помещений, согласно инструкции, отбирают две пробы воздуха с помощью аппарата Кротова по 100 л каждая.

С целью исследования воздуха на наличие стафилококка берут пробы воздуха на две чашки с желточно-солевым агаром или молочно-желточно-солевым агаром, пропуская 250 л воздуха.

Санитарно-бактериологическое исследование воздуха имеет большое значение в хирургических отделениях больниц, родильных домах, где имеется опасность возникновения внутрибольничной инфекции. Обнаружение Staph, aureus в этих отделениях является недопустимым. Нарастание количества Staph, aureus определенных фаготипов следует рассматривать как грозный предвестник возможного появления госпитальной инфекции.

Выявление вирусов и патогенных бактерий из воздуха закрытых помещений проводят по эпидемиологическим показаниям при оценке эффективности обеззараживания воздуха, при контроле санитарно-микробиологического содержания больничных учреждений и т. д.

Для выявления микобактерий туберкулеза отбор проб производят при помощи прибора ПОВ-І, в котором в качестве улавливающей используют среду Школьниковой. Исследуют 250—500 л воздуха (см. Микробиологическая диагностика туберкулеза).

Эталоном чистоты атмосферного воздуха считают показатель бактериальной обсемененности в зеленой зоне (зеленая зона ВДНХ—350 микробов в 1 м 3). Пример значительного обсеменения воздуха — места скопления людей и транспорта. Воздух операционных до начала операции должен содержать не более 500, а после нее — не более 1000 микробов в 1 м 3 . Staph, aureus не должны обнаруживаться при исследовании 250 л воздуха. В предоперационных и перевязочных до начала работы количество микробов в 1 м 3 не должно превышать 750. В больничных палатах летом число микробов должно быть менее 3500, а зимой — менее 5000 в 1 м 3 . Здесь допускают наличие стафилококков в воздухе: летом — 24, зимой — 52 при исследовании 250 л воздуха.

Смолина Света

ВВЕДЕНИЕ

Воздух является средой, содержащей значительное количество микроорганизмов. С воздухом они могут переноситься на значительные расстояния. В отличие от воды и почвы, где микробы могут жить и размножаться, в воздухе они только сохраняются некоторое время, а затем гибнут под влиянием ряда неблагоприятных факторов: высыхания, действия солнечной радиации, смены температуры, отсутствия питательных веществ и др. Наиболее устойчивые микроорганизмы могут долго сохраняться в воздухе и обнаруживаться там с большим постоянством. К такой постоянной микрофлоре воздуха относятся споры грибов и бактерий.

Количество микроорганизмов в воздухе колеблется в значительных пределах и зависит от условий, расстояния от поверхности земли, от близости населенных пунктов и т. д. Наибольшее количество микробов содержит воздух промышленных городов, наименьшее – воздух лесов, гор . Много бактерий находится в воздухе помещений, где неизбежно массовое хождение людей (кинотеатры, театры, школы, вокзалы и т. д.), сопровождающееся поднятием в воздух пыли .

Всем известно, что здоровье человека зависит от качества окружающей среды: воды, воздуха и других факторов. Школа – это такое место, где постоянно находится много людей. На своей одежде, обуви, внутри своего организма они приносят в школу много разных микробов, бактерий и других микроорганизмов.

Цель: на основе исследований определить степень загрязнения воздуха закрытых школьных помещений.

  1. определить количество микроорганизмов, содержащихся в воздухе различных помещений;
  2. изучить динамику содержания микроорганизмов в воздухе в течение учебного дня.

МЕТОДЫ ИССЛЕДОВАНИЯ

Наиболее старым методом микробиологического анализа воздуха является седиментационный метод (метод оседания Коха). Его используют только при исследовании воздуха закрытых помещений. Для этого чашки Петри с питательной средой при исследовании общей бактериальной загрязненности воздуха оставляют открытыми в местах отбора проб в течение 5-10 минут. По окончании экспозиции чашки закрывают и помещают в термостат при 37 0 С на 24 ч, а затем при комнатной температуре выдерживают еще сутки. О степени загрязненности воздуха судят по количеству выросших колоний. Данный метод пригоден для сравнительных оценок чистоты воздуха .

Учет посева бактерий из воздуха производят путем подсчета выросших колоний бактерий отдельно. Зная площадь чашки Петри, можно определить количество микроорганизмов в 1м 3 воздуха. Для этого: 1) определяется площадь питательной среды в чашке Петри по формуле рr 2 ; 2) вычисляют количество колоний на площади 1 дм 2 ; 3 воздуха .

Примерный расчет. В чашке Петри диаметром в10 см выросло 25 колоний.

  1. определяют площадь питательной среды в чашке Петри по формуле 3,14*5 2 или 3,14*25 = 78,5 см 2

2) вычисляют количество колоний на площади 1 дм , равного 100 см 2

25колоний – 78,5 см 2

х колоний – 100 мм 2

х=25*100/78,5=32 колоний

т. е. на площади 1 дм 2 имеется 32 колонии.

3) пересчитывают количество бактерий на 1м 3 воздуха, который равен 1000л. Содержащиеся 32 колоний бактерий на площади 1 дм 2 соответствуют объему 10л воздуха. Чтобы узнать количество в1м 3 воздуха, составляют пропорцию:

х=32*1000/10=3200

Следовательно, в1м 3 воздуха содержится 3200 бактериальных телец.

Таблица 1. Критерии для оценки загрязненности помещений по числу микроорганизмов в 1м 3 воздуха

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

В ходе исследований для каждой микробиологической оценки использовалось по три чашки Петри. На основании подсчета колоний, выросших в чашках Петри, была проведена оценка содержания микроорганизмов, которые содержатся в воздухе различных помещений в разные периоды учебного дня.

На первом этапе исследования было проведено сравнение данных, полученных в разных помещениях в один период времени. Наименьшее количество микроорганизмов (1571) было выявлено в классном помещении, а наибольшее (16220) – в спортзале. По-видимому это объясняется тем, что занятие физкультурой, подвижные игры приводят к поднятию пыли, следовательно и микроорганизмов, находящихся в ней.

Таблица 3. Количество микроорганизмов, содержащееся в 1м 3 воздуха школьных помещений

На втором этапе исследований был проведен сравнительный анализ загрязнения воздуха в одном и том же помещении, но в разные периоды учебного дня. Объектом для данного исследования был выбран коридор.

Таблица 4. Количество микроорганизмов, содержащееся в 1м 3 воздуха школьного коридора в разные периоды времени

1-ая чашка

2-ая чашка

До 1 урока

1 перемена

5 перемена

На третьем этапе был также проведен анализ изменения содержания микроорганизмов в воздухе в одном помещении (класс химии), но при наличии двух дополнительных факторов: 1) проветриваемость помещения, 2) количество людей и интенсивность их передвижения.

В классе в течение всего дня были открыты форточки, что способствовало проветриванию помещения. Однако наблюдается резкое увеличение количества микроорганизмов во время 1 перемены, когда происходила смена различных классов. Таким образом, резкий скачок количества микроорганизмов, по-видимому, объясняется увеличением количества людей в помещении. При этом, проветриваемость помещения не оказывает существенного влияния на содержание микроорганизмов в воздухе в это время.

Однако на 5 перемене люди в классной комнате отсутствовали и это привело к снижению численности микроорганизмов в воздухе. Все это говорит о первостепенном влиянии именно такого фактора, как количество людей и интенсивность передвижения на степень загрязненеия воздуха микроорганизмами. Проветриваемость же помещений возможно оказывает свое влияние на общее количество микроорганизмов, но не на динамику их содержания.

Таблица 5. Количество микроорганизмов, содержащееся в 1м 3 воздуха классного помещения в разные периоды времени

На четвертом этапе был проведен сравнительный анализ классного кабинета и коридора в течение всего учебного дня.

Таблица 6. Количество микроорганизмов, содержащееся в 1м 3 воздуха классного помещения

1-ая чашка

2-ая чашка

1 перемена

2 перемена

3 перемена

4 перемена

5 перемена

После уроков

Таблица 7. Количество микроорганизмов, содержащееся в 1м 3 воздуха коридора

ЗАКЛЮЧЕНИЕ

  1. Наибольшее количество микроорганизмов выявлено в воздухе спортзала, а наименьшее – классной комнаты.
  2. Наблюдается тенденция увеличения количества микроорганизмов в воздухе коридора в течение учебного дня.
  3. В воздухе классного помещения содержание микроорганизмов увеличивается во время перемен и уменьшается во время уроков.
  4. Количество микроорганизмов в воздухе в первую очередь зависит от численности людей в помещении и интенсивности их передвижения.

СПИСОК ЛИТЕРАТУРЫ

1 Федоров М.В. Микробиология. – М.: Гос. Изд-во сельхозлитературы,1960.– 350 с.

2 Бакулина Н.А., Краева Э.Л. Микробиология.– М.: Медицина, 1980.– 338 с.

3 Павлович С.А., Пяткин К.Д. Медицинская микробиология. – Минск: Высшая школа, 1993. – 200 с.

4 Лабинская А.С. Микробиология с техникой микробиологических методов исследования.– М.: Медицина, 1968.– 392 с.

5 Черемисинов Н.А., Боева Л.И., Семихатова О.А. Практикум по микробиологии.– М.: Высшая школа, 1967.– 168 с.

6 Шлегель Г.Х. Общая микробиология.– М.: Мир, 1987.– 566 с.